Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding genes for childhood obesity

08.04.2013
Genome wide study identifies genetic variants associated with childhood obesity

Researchers have identified four genes newly associated with severe childhood obesity. They also found an increased burden of rare structural variations in severely obese children.

The team found that structural variations can delete sections of DNA that help to maintain protein receptors known to be involved in the regulation of weight. These receptors are promising targets for the development of new drugs against obesity.

As one of the major health issues affecting modern societies, obesity has increasingly received public attention. Genes, behavior and environment, all contribute to the development of obesity.

Children with severe obesity are more likely to have a strong genetic contribution. This study has enhanced understanding of how both common and rare variants around specific genes and genetic regions are involved in severe childhood obesity.

"We've known for a long time that changes to our genes can increase our risk of obesity. For example, the gene FTO has been unequivocally associated with BMI, obesity and other obesity-related traits," says Dr Eleanor Wheeler, first author from the Wellcome Trust Sanger Institute. "In our study of severely obese children, we found that variations in or near two of the newly associated genes seem to have a comparable or greater effect on obesity than the FTO gene: PRKCH and RMST."

The team found that different genes can be involved in severe childhood obesity compared to obesity in adults.

Rare genetic changes in one of the newly associated genes, LEPR, are known to cause a severe form of early onset obesity. The team identified a more common variant in this gene, found in 6 per cent of the population, that can increase a person's risk of obesity. This finding is an example of where rare and more common variations around the same gene or region can influence the risk of severe obesity.

Some of the children in this study had an increased number of structural variations of their DNA that delete G-protein coupled receptors, important receptors in the regulation of weight. These receptors are key targets for current drug development and may have potential therapeutic implications for obesity.

"Some children will be obese because they have severe mutations, but our research indicates that some may have a combination of severe mutations and milder acting variants that in combination contribute to their obesity," says Professor Sadaf Farooqi, co-lead author from the University of Cambridge. "As we uncover more and more variants and genetic links, we will gain a better basic understanding of obesity, which in turn will open doors to areas of clinically relevant research."

As part of the UK10K project the team are now exploring all the genes of 1000 children with severe obesity in whom a diagnostic mutation has not been found. This work will find new severe mutations that may explain the causes of obesity in other children.

"Our study adds evidence that a range of both rare and common genetic variants are responsible for severe childhood obesity," says Dr Inȇs Barroso, co-lead author from the Wellcome Trust Sanger Institute. "This work brings us a step closer to understanding the biology underlying this severe form of childhood obesity and providing a potential diagnosis to the children and their parents."

Notes to Editors

Publication Details

Eleanor Wheeler, Ni Huang, Elena G Bochukova, Julia M Keogh, Sarah Lindsay, Sumedha Garg, Elana Henning, Hannah Blackburn, Ruth J F Loos, Nick J Wareham, Stephen O'Rahilly, Matthew E Hurles, Inês Barroso & I Sadaf Farooqi (2013) 'Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity.'

Advance Online Publication (AOP) on Nature Genetics's website on 7 April doi:10.1038/ng.2607

Funding

This work was supported by the Wellcome Trust at the MRC and National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre

Participating Centres

Wellcome Trust Sanger Institute, Cambridge, UK.
University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.

Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK

Selected Websites

The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. It admits the very best and brightest students, regardless of background, and offers one of the UK's most generous bursary schemes. The University of Cambridge's reputation for excellence is known internationally and reflects the scholastic achievements of its academics and students, as well as the world-class original research carried out by its staff. Some of the most significant scientific breakthroughs occurred at the University, including the splitting of the atom, invention of the jet engine and the discoveries of stem cells, plate tectonics, pulsars and the structure of DNA. From Isaac Newton to Stephen Hawking, the University has nurtured some of history's greatest minds and has produced more Nobel Prize winners than any other UK institution with over 80 laureates.

http://www.cam.ac.uk
The Institute of Metabolic Science is a joint venture between the University of Cambridge, the Medical Research Council and Cambridge University Hospitals NHS Foundation Trust. The Institute of Metabolic Science is unique in the UK, being focussed on understanding the biological basis of diabetes, obesity and metabolic disorders, all of which are major and increasing threats to public health, and on translating these scientific discoveries into improved patient care and disease prevention.

http://www.ims.cam.ac.uk/
The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk
Contact details
Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk
Fred Lewsey Press Officer
University of Cambridge,
Cambridge.
Tel +44 (0) 1223 332300
Email Fred.Lewsey@admin.cam.ac.uk

Aileen Sheehy | EurekAlert!
Further information:
http://www.sanger.ac.uk

Further reports about: DNA FTO MRC Medical Wellness Nobel Prize genetic variant metabolic disorder specific gene

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>