Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding may end a 30-year scientific debate

12.04.2011
A chance observation by a Queen’s researcher might have ended a decades-old debate about the precise way antifreeze proteins (AFP) bind to the surface of ice crystals.

“We got a beautiful view of water bound to the ice-binding site on the protein,” says Peter Davies, a professor in the Department of Biochemistry and a world leader in antifreeze protein research. “In a sense we got a lucky break.”

AFPs are a class of proteins that bind to the surface of ice crystals and prevent further growth and recrystallization of ice. Fish, insects, bacteria and plants that live in sub-zero environments all rely on AFPs to survive. AFPs are also important to many industries, including ice cream and frozen yogurt production which relies on AFPs to control ice-crystal growth.

The implications of this finding reach far beyond creating low-fat, high water-content ice cream that maintains a rich, creamy texture. Having a clear idea of how AFPs bind to the surface of ice crystals would allow researchers and industries to engineer strong, versatile AFPs with countless commercial applications ranging from increasing the freeze tolerance of crops to enhancing the preservation of transplant organs and tissues.

While determining the crystal structure of an AFP from an Antarctic bacterium, biochemistry doctoral candidate Christopher Garnham was fortunate enough to see an exposed ice-binding site—a rare find in the field of AFP crystallography that Mr. Garnham studies.

The ice binding surface of an AFP contains both hydrophobic or ‘water repelling’ groups as well as hydrophilic or ‘water loving’ groups. Until now, the exact function of these counter-acting forces with respect to ice-binding was unknown.

While the presence of water repellent sites can appear counterintuitive on a protein that bonds with ice, Mr. Garnham and Dr. Davies are hypothesizing that the function of these water repellent sites is to force water molecules near the surface of the protein into an ice-like cage that mirrors the pattern of water molecules on the surface of the ice crystal. The water-loving sites on the protein's surface then anchor this ice-like cage to the protein via hydrogen bonds. Not until the ordered waters are anchored to the AFP is it able to bond to ice.

This research will be published today in the Proceedings of the National Academy of Sciences of the United States of America.

Christina Archibald | EurekAlert!
Further information:
http://www.queensu.ca/news/articles/finding-may-end-30-year-scientific-debate

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>