Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the constant in bacterial communication

08.07.2009
The Rosetta Stone of bacterial communication may have been found.

Although they have no sensory organs, bacteria can get a good idea about what's going on in their neighborhood and communicate with each other, mainly by secreting and taking in chemicals from their surrounding environment.

Even though there are millions of different kinds of bacteria with their own ways of sensing the world around them, Duke University bioengineers believe they have found a principle common to all of them.

The researchers said that a more complete understanding of communication between cells and bacteria is essential to the advancement of the new field of synthetic biology, where populations of genetically altered bacteria are "programmed" to do certain things. Such re-programmed bacterial gene circuits could see a wide variety of applications in medicine, environmental cleanup and biocomputing.

It is already known that a process known as "quorum sensing" underlies communication between bacteria. However, each type of bacteria seems to have its own quorum-sensing abilities, with tremendous variations, the researchers said.

"Quorum sensing is a cell-to-cell communication mechanism that enables bacteria to sense and respond to changes in the density of the bacteria in a given environment," said Anand Pai, graduate student in bioengineering at Duke's Pratt School of Engineering. "It regulates a wide variety of biological functions such as bioluminescence, virulence, nutrient foraging and cellular suicide."

The researchers found that the total volume of bacteria in relation to the volume of their environment is a key to quorum sensing, no matter what kind of microbe is involved.

"If there are only a few cells in an area, nothing will happen," Pai said. "If there are a lot of cells, the secreted chemicals are high in concentration, causing the cells to perform a specific action. We wanted to find out how these cells know when they have reached a quorum."

Pai and scientist Lingchong You, assistant professor of biomedical engineering and a member of Duke's Institute for Genome Sciences & Policy and Center for Systems Biology, have discovered what they believe is a common root among the different forms of quorum sensing. In an article in the July 2009 issue of the journal Molecular Systems Biology, they term this process "sensing potential."

"Sensing potential is essentially the linking of an action to the number of cells and the size of their environment," You said. "For example, a small number of cells would act differently than the same number of cells in a much larger space. No matter what type of cell or their own quorum sensing abilities, the relationship between the size of a cell and the size of its environment is the common thread we see in all quorum sensing systems.

"This analysis provides novel insights into the fundamental design of quorum sensing systems," You said. "Also, the overall framework we defined can serve as a foundation for studying the dynamics and the evolution of quorum sensing, as well as for engineering synthetic gene circuits based on cell-to-cell communications."

Synthetic gene circuits are carefully designed combinations of genes that can be "loaded" into bacteria or other cells to direct their actions in much the same way that a basic computer program directs a computer. Such re-programmed bacteria would exist as a synthetic ecosystem.

"Each population will synthesize a subset of enzymes that are required for the population as a whole to produce desired proteins or chemicals in a coordinated way," You said. "We may even be able to re-engineer bacteria to deliver different types of drugs or selectively kill cancer cells"

For example, You has already gained insights into the relationship between predators and prey by creating a synthetic circuit involving two genetically altered lines of bacteria. The findings from that work helped define the effects of relative changes in populations.

The research was supported by National Institutes of Health, a David and Lucile Packard Fellowship, and a DuPont Young Professor Award.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>