Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right combination

22.02.2010
A combination of positive and negative regulation narrowly restricts a genome-shuffling enzyme’s activity

Diversity may be the spice of life, but it’s also the key to an effective immune system, as B lymphocytes rely on extensive recombination to shuffle their antibody-coding genes to produce molecules that can recognize a diverse array of potential threats.

Antibodies with established targets can also undergo further alterations to modulate the immune response that they trigger upon antigen binding. Known as ‘class switch recombination’ (CSR), this process relies on activation-induced cytidine deaminase (AID), an enzyme that induces major rearrangements in antibody-coding loci.

Unregulated, AID can generate cancer-causing genomic rearrangements, and a team led by Tasuku Honjo and Hitoshi Nagaoka at the University of Kyoto, with Sidonia Fagarasan’s group at the RIKEN Research Center for Allergy and Immunology in Yokohama, recently set about exploring the mechanisms that help constrain expression of the Aicda gene.

“AID is tightly regulated in activated B cells and speculated to be a B cell-specific factor—however, the Aicda promoter is not lymphocyte specific,” says Thinh Huy Tran, lead author of the team’s recent article in Nature Immunology1. Comparison of the mouse and human versions of this promoter revealed four discrete segments that had been closely conserved throughout evolution. To assess their contributions to gene specificity, the researchers generated artificial promoters consisting of various subsets of these conserved regions, which they used to regulate a bioluminescence-producing ‘reporter’ gene in cultured lymphocytes.

They found that two of these four segments directly contribute to specificity. ‘Region 2’ contains binding sites for transcription factors known to guide B lymphocyte development, but also contains sequences that strongly inhibit Aicda expression. The other promoter segment, ‘region 4’, appears to participate in the strong induction of this gene in response to signaling factors that trigger CSR in vivo.

“Our results demonstrate for the first time that two separate regions contribute together to regulating Aicda expression, in which silencers are derepressed by B lineage-specific and stimulation-responsive enhancers,” says Tran. “The negative factors that restrict Aicda expression might contribute to retaining genomic stability, while region 4 is essential for Aicda response in B cells to environmental stimulation ... and is critical to generate antibody diversification.”

The investigators are now examining the individual importance of these various putative Aicda regulators, but also intend to further explore the bigger picture of the effects of AID dysregulation. “We plan to investigate the correlation between Aicda expression levels with mutation frequency in non-immune genes ... and the role of AID in tumor development,” says Tran.

The corresponding author for this highlight is based at the Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology

Journal information
1. Tran, T.H., Nakata, M., Suzuki, K., Begum, N.A., Shinkura, R., Fagarasan, S., Honjo, T. & Nagaoka, H. B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunology 11 148-154 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6182
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>