Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right combination

22.02.2010
A combination of positive and negative regulation narrowly restricts a genome-shuffling enzyme’s activity

Diversity may be the spice of life, but it’s also the key to an effective immune system, as B lymphocytes rely on extensive recombination to shuffle their antibody-coding genes to produce molecules that can recognize a diverse array of potential threats.

Antibodies with established targets can also undergo further alterations to modulate the immune response that they trigger upon antigen binding. Known as ‘class switch recombination’ (CSR), this process relies on activation-induced cytidine deaminase (AID), an enzyme that induces major rearrangements in antibody-coding loci.

Unregulated, AID can generate cancer-causing genomic rearrangements, and a team led by Tasuku Honjo and Hitoshi Nagaoka at the University of Kyoto, with Sidonia Fagarasan’s group at the RIKEN Research Center for Allergy and Immunology in Yokohama, recently set about exploring the mechanisms that help constrain expression of the Aicda gene.

“AID is tightly regulated in activated B cells and speculated to be a B cell-specific factor—however, the Aicda promoter is not lymphocyte specific,” says Thinh Huy Tran, lead author of the team’s recent article in Nature Immunology1. Comparison of the mouse and human versions of this promoter revealed four discrete segments that had been closely conserved throughout evolution. To assess their contributions to gene specificity, the researchers generated artificial promoters consisting of various subsets of these conserved regions, which they used to regulate a bioluminescence-producing ‘reporter’ gene in cultured lymphocytes.

They found that two of these four segments directly contribute to specificity. ‘Region 2’ contains binding sites for transcription factors known to guide B lymphocyte development, but also contains sequences that strongly inhibit Aicda expression. The other promoter segment, ‘region 4’, appears to participate in the strong induction of this gene in response to signaling factors that trigger CSR in vivo.

“Our results demonstrate for the first time that two separate regions contribute together to regulating Aicda expression, in which silencers are derepressed by B lineage-specific and stimulation-responsive enhancers,” says Tran. “The negative factors that restrict Aicda expression might contribute to retaining genomic stability, while region 4 is essential for Aicda response in B cells to environmental stimulation ... and is critical to generate antibody diversification.”

The investigators are now examining the individual importance of these various putative Aicda regulators, but also intend to further explore the bigger picture of the effects of AID dysregulation. “We plan to investigate the correlation between Aicda expression levels with mutation frequency in non-immune genes ... and the role of AID in tumor development,” says Tran.

The corresponding author for this highlight is based at the Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology

Journal information
1. Tran, T.H., Nakata, M., Suzuki, K., Begum, N.A., Shinkura, R., Fagarasan, S., Honjo, T. & Nagaoka, H. B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunology 11 148-154 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6182
http://www.researchsea.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>