Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the right combination

22.02.2010
A combination of positive and negative regulation narrowly restricts a genome-shuffling enzyme’s activity

Diversity may be the spice of life, but it’s also the key to an effective immune system, as B lymphocytes rely on extensive recombination to shuffle their antibody-coding genes to produce molecules that can recognize a diverse array of potential threats.

Antibodies with established targets can also undergo further alterations to modulate the immune response that they trigger upon antigen binding. Known as ‘class switch recombination’ (CSR), this process relies on activation-induced cytidine deaminase (AID), an enzyme that induces major rearrangements in antibody-coding loci.

Unregulated, AID can generate cancer-causing genomic rearrangements, and a team led by Tasuku Honjo and Hitoshi Nagaoka at the University of Kyoto, with Sidonia Fagarasan’s group at the RIKEN Research Center for Allergy and Immunology in Yokohama, recently set about exploring the mechanisms that help constrain expression of the Aicda gene.

“AID is tightly regulated in activated B cells and speculated to be a B cell-specific factor—however, the Aicda promoter is not lymphocyte specific,” says Thinh Huy Tran, lead author of the team’s recent article in Nature Immunology1. Comparison of the mouse and human versions of this promoter revealed four discrete segments that had been closely conserved throughout evolution. To assess their contributions to gene specificity, the researchers generated artificial promoters consisting of various subsets of these conserved regions, which they used to regulate a bioluminescence-producing ‘reporter’ gene in cultured lymphocytes.

They found that two of these four segments directly contribute to specificity. ‘Region 2’ contains binding sites for transcription factors known to guide B lymphocyte development, but also contains sequences that strongly inhibit Aicda expression. The other promoter segment, ‘region 4’, appears to participate in the strong induction of this gene in response to signaling factors that trigger CSR in vivo.

“Our results demonstrate for the first time that two separate regions contribute together to regulating Aicda expression, in which silencers are derepressed by B lineage-specific and stimulation-responsive enhancers,” says Tran. “The negative factors that restrict Aicda expression might contribute to retaining genomic stability, while region 4 is essential for Aicda response in B cells to environmental stimulation ... and is critical to generate antibody diversification.”

The investigators are now examining the individual importance of these various putative Aicda regulators, but also intend to further explore the bigger picture of the effects of AID dysregulation. “We plan to investigate the correlation between Aicda expression levels with mutation frequency in non-immune genes ... and the role of AID in tumor development,” says Tran.

The corresponding author for this highlight is based at the Laboratory for Mucosal Immunity, Research Center for Allergy and Immunology

Journal information
1. Tran, T.H., Nakata, M., Suzuki, K., Begum, N.A., Shinkura, R., Fagarasan, S., Honjo, T. & Nagaoka, H. B cell–specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nature Immunology 11 148-154 (2010).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6182
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>