Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New finding in cell migration may be key to preventing clots, cancer spread

15.01.2010
Researchers at the University of Illinois at Chicago College of Medicine have discovered how cells in the body flatten out as they adhere to internal bodily surfaces, the first step in a wide range of important processes including clot formation, immune defense, wound healing, and the spread of cancer cells.

Their study is published in the January 15 issue of Science.

Xiaoping Du, UIC professor of pharmacology, and his colleagues were trying to better understand how platelets in the blood form clots. Clots that form in blood vessels can lead to heart attack and stroke.

To form clots, platelets flatten out to seal the wound and to bind to each other, a process called "spreading." Spreading is the first step in a number of cell processes, Du says.

In order for cells to move, they must adhere and spread onto the extracellular matrix, a scaffolding of fibers that supports cells. Only then is the cell able to crawl along -- whether it be an immune cell moving toward a wound, or a cancer cell invading neighboring tissue.

Adhesion to the extracellular matrix is mediated by cell receptors called integrins. Du's team "found the mechanism for the transmission of the signal to spread" by the integrins, he said.

The integrin molecule spans the cell membrane, with a portion of the integrin inside the cell and another part outside.

When the outside part of the integrin molecule binds to the matrix, a signal is sent inside the cell via a G protein, a type of protein involved in cell signaling but that was not previously known to interact with integrins.

Du and his colleagues found that the G protein G-alpha-13 binds to the inner side of the integrin molecule when the outside portion binds to the matrix. G-alpha-13 then inhibits a molecule called RhoA, which normally allows the cell to maintain a spherical shape. When RhoA is inhibited by G-alpha-13, the cell is able to flatten out and spread onto the matrix.

Because the factors involved in this first step in spreading are common to virtually all cells, Du believes that the mechanism is likely universal.

"Understanding these fundamental processes has the potential to allow us to develop drugs to treat thrombosis, stroke and heart attack," he said, and may lead to drugs that could stop cancer cells from migrating.

The study was supported by grants from the National Heart Lung and Blood Institute, one of the National Institutes of Health. Haixia Gong, Bo Shen, Panagiotis Flevaris, Christina Chow, Stephen Lam, Tatyana Voyno-Yasenetskaya, and Tohru Kozasa, all of the department of pharmacology in the UIC College of Medicine, contributed to the study.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>