Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding Cancer Cells in Blood

02.03.2012
Chip-based method for the rapid, sensitive isolation of rare cells in blood

Even in the early stages of cancer, individual cancer cells can be found in the blood. Certain subsets of these circulating tumor cells can cause metastasis.



In cases of breast cancer, it is known that these cells can differ from the original tumor cells, which allows them to survive treatment to cause later recurrence. It could thus be quite informative to detect these cells in the blood and examine them more closely. In the journal Angewandte Chemie, researchers at the University of Washington (Seattle, USA) describe a new chip-based method that allows for the detection and isolation of tiny concentrations of such cells in blood.

The detection of circulating tumor cells is a difficult challenge because it requires the detection of quantities as low as one to ten cells per milliliter of blood—in the presence of large numbers of red blood cells and other cells. Conventional methods cannot manage this, but scientists led by Daniel T. Chiu have now developed a microfluidic system that allows for the analysis of 1 mL of blood within 20 minutes. The secret of their success is to virtually divide the sample into aliquots (portions) and to search these for the presence or absence of the desired cell types.

The blood is initially marked with fluorescent markers that specifically bind to the desired tumor cells. The sample is then passed through a system of microchannels, where it passes through a zone that is irradiated by a laser. The size of this zone determines the volume of the virtual aliquot; 2 nanoliters was found to work well. The laser causes the marker to fluoresce if marked cells are present. It can thus be determined whether or not an aliquot contains one (or more) of the desired cells. If the aliquot fluoresces, it is automatically pumped into a different channel than the fractions that do not fluoresce. The positive aliquots enter a filtration chamber. Red blood cells and the majority of blood cells pass through the filter; tumor cells are larger and are trapped. They can be counted on the filter, examined by microscope, or removed by micropipette for further examination.

By using a second marker, certain subpopulations, such as tumor stem cells, can be identified.

Experiments with blood containing a known number of breast cancer cells yielded a recovery rate of 93 % and a false positive rate of zero. Real blood samples from patients were also examined and the results compared with those from a clinically established system. The new microfluidic system proved to be significantly more sensitive. This new procedure has potential for monitoring treatment, aftercare, and the early detection of cancer.

About the Author
Daniel T. Chiu is the A. Bruce Montgomery Professor of Chemistry and Bioengineering at the University of Washington in Seattle. He specializes in the development and translation of new biotechnologies to biomedical and clinical applications. He is also a member of the Fred Hutchinson Cancer Research Center's cancer consortium, and the University of Washington's Center for Nanotechnology, and Neurobiology and Behavior program.
Author: Daniel T. Chiu, University of Washington, Seattle (USA), http://depts.washington.edu/chem/people/faculty/chiu.html
Title: Sensitive and High-Throughput Isolation of Rare Cells from Peripheral Blood with Ensemble-Decision Aliquot Ranking

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201108695

Daniel T. Chiu | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>