Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding a target for tumor suppression

04.02.2014
Study of proteins opens a new avenue for cancer researchers

One of the hopes for victory against cancer hinges on naturally-occurring proteins whose job is to make their host cell die.

Since their natural role is to stop unhealthy cell proliferation, the idea is that one or more of these proteins could be harnessed to stop the growth of tumors.

Brigham Young University scientists recently stumbled onto one potential tumor suppressor with an especially ominous name: Programmed Cell Death Protein 5 (aka PDCD5). What they found opens a new avenue for cancer researchers; in fact, the Journal of Biological Chemistry recognizes the work as their research paper of the week.

Programmed cell death and serendipity

It’s tricky to find how and where potential tumor-suppressing proteins do their work inside live cells. Although other labs actively hunted for PDCD5’s cellular workplace, the researchers who actually found it weren’t looking for it at all.

BYU chemist Barry Willardson and his team study totally different proteins called molecular chaperones, which help other proteins to fold into their proper shape.

But proteins are like teenagers in a sense: You can learn a lot by noticing who they hang out with. So the Willardson group went in search of the chaperone’s buddies.

“It’s a great type of experiment because it tells you things that you may not have considered,” Willardson said.

So when they spotted PDCD5 hooking up with their protein, they wondered if its tumor suppressor ability was linked to the chaperone.

To get a closer look at the pairing, the BYU team collaborated with scientists in Madrid who operate a cryo-electron microscope in Spain’s National Center of Biotechnology. Their images showed how the mysterious Programmed Cell Death Protein 5 could block the production of tubulin, the material that cells use as scaffolding during cell division.

What this means for cancer research

Hundreds of proteins have been targeted for their potential to suppress tumors. This study identifies how one of those proteins may keep the growth of healthy cells in check.

“We’ve provided information on how this protein functions, and it needs to remain functional to be a tumor suppressor,” Willardson said. “It really is just a first step, but it gives us a direction we want to follow.”

This work was a collaboration between Willardson’s lab, BYU biochemistry professor John Prince’s lab and the group in Madrid. Six current and former BYU students also co-authored the study.

Joe Hadfield | EurekAlert!
Further information:
http://www.byu.edu

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>