Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To Find Campylobacter jejuni, Look in the Biofilms

Research at the University of Arkansas shows that Campylobacter jejuni is vulnerable to stress, so it survives by latching onto other colonies of bacteria known as biofilms.

Campylobacter jejuni is a pathogen found in chickens and is the nation’s leading cause of foodborne bacterial diarrhea, so poultry producers look for ways to control it before the birds go to processing. The good news is that the bacterium is susceptible to stress and is vulnerable. So what keeps it going?

Here’s one way: the bug latches onto other colonies of bacteria – biofilms – and uses them as places to thrive in ways the Campylobacter jejuni would be less likely to do on their own.

“The capture of C. jejuni could be correlated to the amount of biofilm present,” said Irene Hanning, a post-doctoral associate in food science at the University of Arkansas System Division of Agriculture who investigated the issue for the Food Safety Consortium. “This makes control of all biofilms critical because the communities have a strong potential to capture high levels of C. jejuni.”

First, it’s important to consider how biofilms work. Many bacteria have an ability to form a biofilm, which Hanning described as an assemblage of bacteria encased in a sticky substance. Biofilms are complex structures that adhere to surfaces and consist of colonies of bacteria.

Being in a biofilm is an advantage to bacteria. The biofilm provides protection from antibiotics and other threats to bacteria’s existence. C. jejuni has had a major disadvantage in that unlike many other bacteria, it doesn’t do well at making its own biofilm. So it may have found the next best thing to do: it moves into biofilms that are already protecting other bacteria. C. jejuni becomes a secondary colonizer.

The host colonizers can be any of several bacteria, but C. jejuni’s most prevalent host turns out to be Pseudomonas, which also serve as the main spoilage bacteria on chicken carcasses and are excellent biofilm formers, Hanning said.

Hanning looked at the ability of C. jejuni to survive from biofilm populations isolated from four places: a drinking unit in a chicken growout house, a drain under a plucker in a processing plant, a retail chicken carcass and a crate used to haul live chickens. No C. jejuni was found on the growth surfaces outside of biofilms that had already been established. The biofilms were cultured under three different temperatures that showed varying levels of ability to harbor C. jejuni.

“These experiments indicated that C. jejuni can be captured and harbored by a biofilm regardless of the bacterial constituents,” Hanning said. “Therefore most biofilms should be considered as having the potential to promote and harbor C. jejuni.”

Irene Hanning, University of Arkansas, 479-575-4206 or

Dave Edmark | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>