Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


To Find Campylobacter jejuni, Look in the Biofilms

Research at the University of Arkansas shows that Campylobacter jejuni is vulnerable to stress, so it survives by latching onto other colonies of bacteria known as biofilms.

Campylobacter jejuni is a pathogen found in chickens and is the nation’s leading cause of foodborne bacterial diarrhea, so poultry producers look for ways to control it before the birds go to processing. The good news is that the bacterium is susceptible to stress and is vulnerable. So what keeps it going?

Here’s one way: the bug latches onto other colonies of bacteria – biofilms – and uses them as places to thrive in ways the Campylobacter jejuni would be less likely to do on their own.

“The capture of C. jejuni could be correlated to the amount of biofilm present,” said Irene Hanning, a post-doctoral associate in food science at the University of Arkansas System Division of Agriculture who investigated the issue for the Food Safety Consortium. “This makes control of all biofilms critical because the communities have a strong potential to capture high levels of C. jejuni.”

First, it’s important to consider how biofilms work. Many bacteria have an ability to form a biofilm, which Hanning described as an assemblage of bacteria encased in a sticky substance. Biofilms are complex structures that adhere to surfaces and consist of colonies of bacteria.

Being in a biofilm is an advantage to bacteria. The biofilm provides protection from antibiotics and other threats to bacteria’s existence. C. jejuni has had a major disadvantage in that unlike many other bacteria, it doesn’t do well at making its own biofilm. So it may have found the next best thing to do: it moves into biofilms that are already protecting other bacteria. C. jejuni becomes a secondary colonizer.

The host colonizers can be any of several bacteria, but C. jejuni’s most prevalent host turns out to be Pseudomonas, which also serve as the main spoilage bacteria on chicken carcasses and are excellent biofilm formers, Hanning said.

Hanning looked at the ability of C. jejuni to survive from biofilm populations isolated from four places: a drinking unit in a chicken growout house, a drain under a plucker in a processing plant, a retail chicken carcass and a crate used to haul live chickens. No C. jejuni was found on the growth surfaces outside of biofilms that had already been established. The biofilms were cultured under three different temperatures that showed varying levels of ability to harbor C. jejuni.

“These experiments indicated that C. jejuni can be captured and harbored by a biofilm regardless of the bacterial constituents,” Hanning said. “Therefore most biofilms should be considered as having the potential to promote and harbor C. jejuni.”

Irene Hanning, University of Arkansas, 479-575-4206 or

Dave Edmark | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>