Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Find Campylobacter jejuni, Look in the Biofilms

03.09.2008
Research at the University of Arkansas shows that Campylobacter jejuni is vulnerable to stress, so it survives by latching onto other colonies of bacteria known as biofilms.

Campylobacter jejuni is a pathogen found in chickens and is the nation’s leading cause of foodborne bacterial diarrhea, so poultry producers look for ways to control it before the birds go to processing. The good news is that the bacterium is susceptible to stress and is vulnerable. So what keeps it going?

Here’s one way: the bug latches onto other colonies of bacteria – biofilms – and uses them as places to thrive in ways the Campylobacter jejuni would be less likely to do on their own.

“The capture of C. jejuni could be correlated to the amount of biofilm present,” said Irene Hanning, a post-doctoral associate in food science at the University of Arkansas System Division of Agriculture who investigated the issue for the Food Safety Consortium. “This makes control of all biofilms critical because the communities have a strong potential to capture high levels of C. jejuni.”

First, it’s important to consider how biofilms work. Many bacteria have an ability to form a biofilm, which Hanning described as an assemblage of bacteria encased in a sticky substance. Biofilms are complex structures that adhere to surfaces and consist of colonies of bacteria.

Being in a biofilm is an advantage to bacteria. The biofilm provides protection from antibiotics and other threats to bacteria’s existence. C. jejuni has had a major disadvantage in that unlike many other bacteria, it doesn’t do well at making its own biofilm. So it may have found the next best thing to do: it moves into biofilms that are already protecting other bacteria. C. jejuni becomes a secondary colonizer.

The host colonizers can be any of several bacteria, but C. jejuni’s most prevalent host turns out to be Pseudomonas, which also serve as the main spoilage bacteria on chicken carcasses and are excellent biofilm formers, Hanning said.

Hanning looked at the ability of C. jejuni to survive from biofilm populations isolated from four places: a drinking unit in a chicken growout house, a drain under a plucker in a processing plant, a retail chicken carcass and a crate used to haul live chickens. No C. jejuni was found on the growth surfaces outside of biofilms that had already been established. The biofilms were cultured under three different temperatures that showed varying levels of ability to harbor C. jejuni.

“These experiments indicated that C. jejuni can be captured and harbored by a biofilm regardless of the bacterial constituents,” Hanning said. “Therefore most biofilms should be considered as having the potential to promote and harbor C. jejuni.”

Irene Hanning, University of Arkansas, 479-575-4206 or ihanning@uark.edu

Dave Edmark | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>