Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Find Campylobacter jejuni, Look in the Biofilms

03.09.2008
Research at the University of Arkansas shows that Campylobacter jejuni is vulnerable to stress, so it survives by latching onto other colonies of bacteria known as biofilms.

Campylobacter jejuni is a pathogen found in chickens and is the nation’s leading cause of foodborne bacterial diarrhea, so poultry producers look for ways to control it before the birds go to processing. The good news is that the bacterium is susceptible to stress and is vulnerable. So what keeps it going?

Here’s one way: the bug latches onto other colonies of bacteria – biofilms – and uses them as places to thrive in ways the Campylobacter jejuni would be less likely to do on their own.

“The capture of C. jejuni could be correlated to the amount of biofilm present,” said Irene Hanning, a post-doctoral associate in food science at the University of Arkansas System Division of Agriculture who investigated the issue for the Food Safety Consortium. “This makes control of all biofilms critical because the communities have a strong potential to capture high levels of C. jejuni.”

First, it’s important to consider how biofilms work. Many bacteria have an ability to form a biofilm, which Hanning described as an assemblage of bacteria encased in a sticky substance. Biofilms are complex structures that adhere to surfaces and consist of colonies of bacteria.

Being in a biofilm is an advantage to bacteria. The biofilm provides protection from antibiotics and other threats to bacteria’s existence. C. jejuni has had a major disadvantage in that unlike many other bacteria, it doesn’t do well at making its own biofilm. So it may have found the next best thing to do: it moves into biofilms that are already protecting other bacteria. C. jejuni becomes a secondary colonizer.

The host colonizers can be any of several bacteria, but C. jejuni’s most prevalent host turns out to be Pseudomonas, which also serve as the main spoilage bacteria on chicken carcasses and are excellent biofilm formers, Hanning said.

Hanning looked at the ability of C. jejuni to survive from biofilm populations isolated from four places: a drinking unit in a chicken growout house, a drain under a plucker in a processing plant, a retail chicken carcass and a crate used to haul live chickens. No C. jejuni was found on the growth surfaces outside of biofilms that had already been established. The biofilms were cultured under three different temperatures that showed varying levels of ability to harbor C. jejuni.

“These experiments indicated that C. jejuni can be captured and harbored by a biofilm regardless of the bacterial constituents,” Hanning said. “Therefore most biofilms should be considered as having the potential to promote and harbor C. jejuni.”

Irene Hanning, University of Arkansas, 479-575-4206 or ihanning@uark.edu

Dave Edmark | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>