Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Filming bacterial life in multicolor as a new diagnostic and antibiotic discovery tool

11.10.2012
Multicolored probes target cell wall synthesis in the arms race with bacteria
An international team of scientists led by Indiana University chemist Michael S. VanNieuwenhze and biologist Yves Brun has discovered a revolutionary new method for coloring the cell wall of bacterial cells to determine how they grow, in turn providing a new, much-needed tool for the development of new antibiotics.

Discovery of the new method is expected to broadly impact both basic and applied research tied to understanding, controlling or preventing bacterial cell growth in specific environments, said the two scientists in IU Bloomington's College of Arts and Sciences.

"Understanding the mechanisms controlling bacterial cell growth and shape is of tremendous importance in any area where we seek strategies for controlling bacteria, be it for the eradication of pathogens from the human body or the improvement of bacterial growth in bioremediation and industrial processes," VanNieuwenhze said. "Now, with the development of this one-step method to identify the zones of growth in bacterial cells, we have a dramatically improved toolkit to understand the basic mechanisms of bacterial growth that will directly enable the development of antibacterial strategies."

The paper, "In situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids," was published online Wednesday in Angewandte Chemie, the journal of the German Chemical Society and one of the highest-ranked chemistry-specific journals of original research in the world.

In the paper, the authors describe the first direct and universal approach for labeling peptidoglycan, the mesh-like polymer of unusual peptides and sugars that form the cell wall in diverse bacteria. The new method exploits the tolerance of cells for incorporating unnatural D-amino acid-based fluorescent dyes of various sizes and functionalities. The researchers found that these nontoxic dyes preferentially label the sites where the peptidoglycan is synthesized, enabling fine spatiotemporal tracking of cell wall dynamics.

"This method will also enhance our understanding of how bacterial growth is influenced by environmental changes, for example during the development of the human body or as a result of pollution in an environment," Brun said. "Until now, there have been limited ways to visualize active sites of cell growth, and no methods to assess microbial activity exactly where it occurs. Here we have a rapid, simple and universal strategy for direct observation of when and where living bacteria build their cell wall. I like to use Steve Jobs' famous quote when describing this method to my colleagues: 'It just works!'"

"We have synthesized dyes of different colors that we can use to see what part of the cell grew at different times," said graduate student Erkin Kuru, the lead author of the paper. "If we add dyes of different colors at different times during bacterial growth, the cell wall acts almost like a tape recorder for the morphological changes the cells go through during the respective time of exposure to the dyes. As a result, the final picture of the multicolored bacterial cell tells us what part of the cell grew and by how much at the respective time of exposure to the dyes. It's like making a movie of the life of a cell in multicolor."

The researchers found that the new dyes seem to work with any bacterial species, making them a powerful tool for uncovering how a variety of bacteria grow. The new reagents are also expected to allow scientists to make very selective modifications to bacterial cell surfaces that have different functions, in turn allowing for the development of a battery of new diagnostic and therapeutic probes. Furthermore, the affinity of bacteria for unnatural D-amino acids is also expected to pave the way for design and synthesis of novel D-amino acid-based antibacterials.

"Cell wall synthesis is the major target of current antibiotics," VanNieuwenhze said. "There has always been an arms race with bacteria because they constantly develop resistance to antibiotics, so new ones are always needed. We see this as a powerful new tool in that arms race because the cell wall is an excellent target for antibiotics."

Co-authors on the paper with Brun, a professor in IU's Department of Biology, and VanNieuwenhze, an associate professor in the Department of Chemistry, were IU graduate students Kuru, H. Velocity Hughes, Edward Hall and Srinivas Tekkam; IU postdoctoral researcher Pamela J. Brown; and Felipe Cava and Miguel A. de Pedro, professors at Universidad Autonoma de Madrid in Spain.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>