Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Filming bacterial life in multicolor as a new diagnostic and antibiotic discovery tool

11.10.2012
Multicolored probes target cell wall synthesis in the arms race with bacteria
An international team of scientists led by Indiana University chemist Michael S. VanNieuwenhze and biologist Yves Brun has discovered a revolutionary new method for coloring the cell wall of bacterial cells to determine how they grow, in turn providing a new, much-needed tool for the development of new antibiotics.

Discovery of the new method is expected to broadly impact both basic and applied research tied to understanding, controlling or preventing bacterial cell growth in specific environments, said the two scientists in IU Bloomington's College of Arts and Sciences.

"Understanding the mechanisms controlling bacterial cell growth and shape is of tremendous importance in any area where we seek strategies for controlling bacteria, be it for the eradication of pathogens from the human body or the improvement of bacterial growth in bioremediation and industrial processes," VanNieuwenhze said. "Now, with the development of this one-step method to identify the zones of growth in bacterial cells, we have a dramatically improved toolkit to understand the basic mechanisms of bacterial growth that will directly enable the development of antibacterial strategies."

The paper, "In situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids," was published online Wednesday in Angewandte Chemie, the journal of the German Chemical Society and one of the highest-ranked chemistry-specific journals of original research in the world.

In the paper, the authors describe the first direct and universal approach for labeling peptidoglycan, the mesh-like polymer of unusual peptides and sugars that form the cell wall in diverse bacteria. The new method exploits the tolerance of cells for incorporating unnatural D-amino acid-based fluorescent dyes of various sizes and functionalities. The researchers found that these nontoxic dyes preferentially label the sites where the peptidoglycan is synthesized, enabling fine spatiotemporal tracking of cell wall dynamics.

"This method will also enhance our understanding of how bacterial growth is influenced by environmental changes, for example during the development of the human body or as a result of pollution in an environment," Brun said. "Until now, there have been limited ways to visualize active sites of cell growth, and no methods to assess microbial activity exactly where it occurs. Here we have a rapid, simple and universal strategy for direct observation of when and where living bacteria build their cell wall. I like to use Steve Jobs' famous quote when describing this method to my colleagues: 'It just works!'"

"We have synthesized dyes of different colors that we can use to see what part of the cell grew at different times," said graduate student Erkin Kuru, the lead author of the paper. "If we add dyes of different colors at different times during bacterial growth, the cell wall acts almost like a tape recorder for the morphological changes the cells go through during the respective time of exposure to the dyes. As a result, the final picture of the multicolored bacterial cell tells us what part of the cell grew and by how much at the respective time of exposure to the dyes. It's like making a movie of the life of a cell in multicolor."

The researchers found that the new dyes seem to work with any bacterial species, making them a powerful tool for uncovering how a variety of bacteria grow. The new reagents are also expected to allow scientists to make very selective modifications to bacterial cell surfaces that have different functions, in turn allowing for the development of a battery of new diagnostic and therapeutic probes. Furthermore, the affinity of bacteria for unnatural D-amino acids is also expected to pave the way for design and synthesis of novel D-amino acid-based antibacterials.

"Cell wall synthesis is the major target of current antibiotics," VanNieuwenhze said. "There has always been an arms race with bacteria because they constantly develop resistance to antibiotics, so new ones are always needed. We see this as a powerful new tool in that arms race because the cell wall is an excellent target for antibiotics."

Co-authors on the paper with Brun, a professor in IU's Department of Biology, and VanNieuwenhze, an associate professor in the Department of Chemistry, were IU graduate students Kuru, H. Velocity Hughes, Edward Hall and Srinivas Tekkam; IU postdoctoral researcher Pamela J. Brown; and Felipe Cava and Miguel A. de Pedro, professors at Universidad Autonoma de Madrid in Spain.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>