Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Filming bacterial life in multicolor as a new diagnostic and antibiotic discovery tool

11.10.2012
Multicolored probes target cell wall synthesis in the arms race with bacteria
An international team of scientists led by Indiana University chemist Michael S. VanNieuwenhze and biologist Yves Brun has discovered a revolutionary new method for coloring the cell wall of bacterial cells to determine how they grow, in turn providing a new, much-needed tool for the development of new antibiotics.

Discovery of the new method is expected to broadly impact both basic and applied research tied to understanding, controlling or preventing bacterial cell growth in specific environments, said the two scientists in IU Bloomington's College of Arts and Sciences.

"Understanding the mechanisms controlling bacterial cell growth and shape is of tremendous importance in any area where we seek strategies for controlling bacteria, be it for the eradication of pathogens from the human body or the improvement of bacterial growth in bioremediation and industrial processes," VanNieuwenhze said. "Now, with the development of this one-step method to identify the zones of growth in bacterial cells, we have a dramatically improved toolkit to understand the basic mechanisms of bacterial growth that will directly enable the development of antibacterial strategies."

The paper, "In situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids," was published online Wednesday in Angewandte Chemie, the journal of the German Chemical Society and one of the highest-ranked chemistry-specific journals of original research in the world.

In the paper, the authors describe the first direct and universal approach for labeling peptidoglycan, the mesh-like polymer of unusual peptides and sugars that form the cell wall in diverse bacteria. The new method exploits the tolerance of cells for incorporating unnatural D-amino acid-based fluorescent dyes of various sizes and functionalities. The researchers found that these nontoxic dyes preferentially label the sites where the peptidoglycan is synthesized, enabling fine spatiotemporal tracking of cell wall dynamics.

"This method will also enhance our understanding of how bacterial growth is influenced by environmental changes, for example during the development of the human body or as a result of pollution in an environment," Brun said. "Until now, there have been limited ways to visualize active sites of cell growth, and no methods to assess microbial activity exactly where it occurs. Here we have a rapid, simple and universal strategy for direct observation of when and where living bacteria build their cell wall. I like to use Steve Jobs' famous quote when describing this method to my colleagues: 'It just works!'"

"We have synthesized dyes of different colors that we can use to see what part of the cell grew at different times," said graduate student Erkin Kuru, the lead author of the paper. "If we add dyes of different colors at different times during bacterial growth, the cell wall acts almost like a tape recorder for the morphological changes the cells go through during the respective time of exposure to the dyes. As a result, the final picture of the multicolored bacterial cell tells us what part of the cell grew and by how much at the respective time of exposure to the dyes. It's like making a movie of the life of a cell in multicolor."

The researchers found that the new dyes seem to work with any bacterial species, making them a powerful tool for uncovering how a variety of bacteria grow. The new reagents are also expected to allow scientists to make very selective modifications to bacterial cell surfaces that have different functions, in turn allowing for the development of a battery of new diagnostic and therapeutic probes. Furthermore, the affinity of bacteria for unnatural D-amino acids is also expected to pave the way for design and synthesis of novel D-amino acid-based antibacterials.

"Cell wall synthesis is the major target of current antibiotics," VanNieuwenhze said. "There has always been an arms race with bacteria because they constantly develop resistance to antibiotics, so new ones are always needed. We see this as a powerful new tool in that arms race because the cell wall is an excellent target for antibiotics."

Co-authors on the paper with Brun, a professor in IU's Department of Biology, and VanNieuwenhze, an associate professor in the Department of Chemistry, were IU graduate students Kuru, H. Velocity Hughes, Edward Hall and Srinivas Tekkam; IU postdoctoral researcher Pamela J. Brown; and Felipe Cava and Miguel A. de Pedro, professors at Universidad Autonoma de Madrid in Spain.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>