Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now possible to film development of fruit fly and of zebrafish’s eyes and brain

05.07.2010
The scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, who ‘fathered’ the Digital Embryo have now given it wings, creating the Fly Digital Embryo.

In work published today in Nature Methods, they were able to capture fruit fly development on film, and were the first to clearly record how a zebrafish’s eyes and midbrain are formed. The improved technique will also help to shed light on processes and organisms, which have so far been under-studied because they could not be followed under a microscope.

“Non-transparent samples like the fruit fly embryo scatter light, so the microscope picks up a mixture of in-focus and out-of-focus signal– good and bad information, if you like,” says Ernst Stelzer, whose group carried out the project at EMBL. “Our new technique enables us to discriminate between that good and bad information, so it allows us to record organisms which have so far been poorly studied, because of their unfortunate optical properties.”

Philipp Keller, who co-led and conducted the work, and Ernst Stelzer overcame the difficulties caused by thick, opaque samples, by shining patterns of light on them, instead of the usual continuous light sheet. This generates an image with alternating light and dark stripes, unless the light bounces off the sample and changes direction, in which case this stripy pattern will be blurred. By taking multiple images of different phases of the light pattern, and combining them, a computer can filter out the effects of scattered light and generate an accurate image of the sample, thus enabling scientists to record images that were previously unobtainable.By combining this approach with imaging along different angles, the scientists were able to obtain three-dimensional movies of the developing fruit fly embryo in spite of the fact that it is almost opaque.

The EMBL scientists were also able to extend their recordings of zebrafish development to an unprecedented level. They took around one million images to capture the first three days of zebrafish development from three different angles, generating films in which the formation of the animal’s eyes and midbrain are clearly visible.

“Of course, getting such good images is nice for the human observer, but it’s particularly crucial for computational analyses, like tracking cell movements and divisions as we do in the Digital Embryo,” says Philipp Keller, now at the Janelia Farm Research Campus of the Howard Hughes Medical Institute in Ashburn, VA, USA.

The work was done in collaboration with scientists at the University of Heidelberg, Germany and the Sloan-Kettering Institute in New York, USA.

All data, images and videos are freely available online, alongside the data from the digital embryo, at www.digital-embryo.org.

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2010/100704_Heidelberg/index.html

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>