Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting massive declines in frog populations with bacteria and fungicides

20.06.2011
A microscopic chytrid fungus is causing massive declines in frog populations all over the world and even the extinction of certain species.

Together with colleagues from Europe and the USA, researchers from the University of Zurich present methods as to how the chytrid fungus can be combated in the journal Frontiers in Zoology: namely with bacteria and fungicides. However, the possibility of vaccinating the frogs is also being considered.


The midwife toad: a species that is particularly sensitive to the chytrid fungus. Photo: Benedikt Schmidt


The chytrid fungus on a frog’s skin. Photo: Douglas Woodhams

New pathogens are not just a growing problem for humans and livestock, but also wild animals. Along with the destruction of their habitats and the overexploitation of their populations, a disease caused by a chytrid fungus called chytridiomycosis is one of the three biggest killers of amphibians in the world.

Devastating declines in amphibian populations were observed in Australia and Central America in the 1980s and 1990s. However, it wasn’t until 1998 that the pathogen, the chytrid fungus Batrachochytrium dendrobatidis, was finally identified and described; the fungus has been spreading ever since. “Whenever it has turned up somewhere new, huge numbers of frogs have died from the disease,” explains Benedikt Schmidt, a conservation biologist from the University of Zurich. What supposedly started out as a tropical disease has ballooned into a global problem. Today, the fungus can be found on every continent where there are frogs.

In Europe, the chytrid fungus and substantial declines in frog populations were first recorded in the mountains of Spain. “Wherever you looked for the fungus in Europe you found it”, says Schmidt. In Switzerland, the fungus was detected in about half of all the ponds sampled. Almost all the indigenous amphibian species were, albeit to varying degrees, infected with the chytrid fungus. And individual amphibians that had perished from chytridiomycosis were also discovered in Switzerland, although not to quite such an extent as the mass deaths in other countries.

While the causes of “normal” hazards for frogs are well known and it is clear how we can help the amphibians, in the case of the chytrid fungus there are no known counter-measures. Researchers from the University of Zurich therefore teamed up with colleagues from Spain, Australia and the USA to examine possible approaches to fight the fungus. “Treating individuals in a zoo, for example, is a piece of cake,” says Schmidt; “fighting the fungus out in nature, however, is a different kettle of fish altogether.”

Schmidt and co. see two particularly promising methods. The first involves using bacteria that live naturally on the frog’s skin. Some of these skin bacteria block the chytrid fungus and can thus cure the frogs. “The approach works in the lab,” explains Schmidt. “Now we need to test how the method can be used for frogs living in the wild.” The second approach is simple: You catch frogs or tadpoles, treat them for the fungus and let them go again. “This also works fine in principle,” says Schmidt. The only problem is how to prevent the animals from becoming reinfected as soon as you release them back into the wild.

Further reading:
Woodhams, D.C., Bosch, J., Briggs, C.J., Cashins, S., Davis, L.R., Lauer, A., Muths, E., Puschendorf, R., Schmidt, B.R., Sheafor, B. & Voyles, J. 2011. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Frontiers in Zoology 2011, 8: 8. doi:10.1186/1742-9994-8-8

http://www.frontiersinzoology.com/content/8/1/8/abstract

Contact:
Benedikt Schmidt
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Tel.: +41 44 635 49 85 or +41 32 725 72 06
E-Mail: benedikt.schmidt@ieu.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch
http://www.frontiersinzoology.com/content/8/1/8/abstract

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>