Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting fungal infections with bacteria

03.05.2010
A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step towards new strategies to prevent hospital-acquired infections associated with medical implants.

Researchers from University College Cork in Ireland studied the interaction between the bacterium Pseudomonas aeruginosa, which is often associated with severe burns, and the yeast Candida albicans, which can grow on plastic surfaces such as catheters. Both microbes are very common and although they are normally harmless to healthy individuals, they can cause disease in immunocompromised people.

The team discovered that molecules produced by P. aeruginosa bacteria were able to hinder the development of C. albicans 'biofilms' on silicone, when the yeast cells clump together on the surface of the plastic. Interestingly, the interaction between the two organisms did not depend on the well-studied bacterial communication system called Quorum Sensing, indicating that a novel signalling mechanism was at play.

C. albicans is the most common hospital-acquired fungal infection and can cause illness by sticking to and colonising plastic surfaces implanted in the body such as catheters, cardiac devices or prosthetic joints. This biofilm formation is a key aspect of C. albicans infection and is problematic as biofilms are often resistant to the antibiotics used to treat them. Dr John Morrissey, who led the team of researchers, said, "Candida albicans can cause very serious deep infections in susceptible patients and it is often found in biofilm form. It is therefore important to understand the biofilm process and how it might be controlled."

Dr Morrissey believes his work may lead to significant clinical benefits. "If we can exploit the same inhibitory strategy that the bacterium P. aeruginosa uses, then we might be able to design drugs that can be used as antimicrobials to disperse yeast biofilms after they form, or as additives onto plastics to prevent biofilm formation on medical implants," he said. "The next steps are to identify the chemical that the bacterium produces and to find out what its target in the yeast is. We can then see whether this will be a feasible lead for the development of new drugs for clinical application."

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>