Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting bacteria – with viruses

28.07.2014

Study reveals promising information for developing an alternative to antibiotics

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its resistance to antibiotics. The study, by scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, could help bring about a new way of fighting this and other bacteria.

“Our findings will help us to engineer effective, specific bacteriophages, not just for C. diff infections, but for a wide range of bacteria related to human health, agriculture and the food industry,” says Rob Meijers from EMBL, who led the work. C. diff infections, which can be fatal, are currently very difficult to treat, as the bacterium is particularly unresponsive to many antibiotics.

A possible solution would be not to use antibiotics, but instead employ bacteriophages – viruses which infect only bacteria. Scientists know that these viruses hijack a bacterium’s DNA-reading machinery and use it to create many new bacteriophages. These then start demolishing the bacterium’s cell wall. Once its wall begins to break down, the bacterial cell can no longer withstand its own internal pressure and explodes.

The newly formed viruses burst out to find new hosts and the bacterium is destroyed in the process.   To harness the power of bacteriophages and develop effective therapies against bacteria like C.diff, scientists need to know exactly how these viruses destroy bacterial cell walls. The viruses’ demolition machines, endolysins, are known, but just how these enzymes are activated was unclear – until now.

“These enzymes appear to switch from a tense, elongated shape, where a pair of endolysins are joined together, to a relaxed state where the two endolysins lie side-by-side,” explains Matthew Dunne who carried out the work. “The switch from one conformation to the other releases the active enzyme, which then begins to degrade the cell wall.”

Meijers and collaborators discovered the switch from ‘standby’ to ‘demolition’ mode by determining endolysins’ 3-dimensional structure, using X-ray crystallography and small angle X-ray scattering (SAXS) at the Deutsches Elektronen-Synchrotron (DESY). They compared the structures of endolysins from two different bacteriophages, which target different kinds of Clostridium bacteria: one infects C. diff, the other destroys a Clostridium species that causes defects in fermenting cheese.

Remarkably, the scientists found that the two endolysins share this common activation mechanism, despite being taken from different species of Clostridium. This, the team concludes, is an indicator that the switch between tense and relaxed enzymes is likely a widespread tactic, and could therefore be used to turn other viruses into allies in the fight against other antibiotic-resistant bacteria.

The work was performed in collaboration with Arjan Narbad’s lab at the Institute of Food Research in Norwich, UK, who tested how engineering mutations in the endolysins affected their ability to tear down the bacterial cell wall.

To be published online in PLoS Pathogens on 24 July 2014: http://dx.plos.org/10.1371/journal.ppat.1004228.

For images and for more information please visit: www.embl.org/downloads/2014/140724_Hamburg (username = press, password = images4u)

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made. 

Sonia Furtado Neves EMBL Press Officer & Deputy Head of Communications Meyerhofstr. 1, 69117 Heidelberg, Germany Tel.: +49 (0)6221 387 8263 Fax: +49 (0)6221 387 8525 sonia.furtado@embl.de http://s.embl.org/press

Sonia Furtado Neves | EMBL Press

Further reports about: Biology Clostridium EMBL Fighting Laboratory Molecular X-ray antibiotics bacteria bacterium enzymes infections species viruses

More articles from Life Sciences:

nachricht Carbonic Acid—And Yet It Exists!
23.09.2014 | Angewandte Chemie International Edition

nachricht A New Strategy to Analyze The Cellular World
23.09.2014 | Exzellenzcluster und DFG-Forschungszentrum Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

17th European Health Forum Gastein: “Electing Health – The Europe We Want”

23.09.2014 | Event News

Future questions regarding data processing

22.09.2014 | Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

 
Latest News

Lego-like modular components make building 3-D 'labs-on-a-chip' a snap

23.09.2014 | Interdisciplinary Research

Virtual water: Tracking the unseen water in goods and resources

23.09.2014 | Earth Sciences

Carbonic Acid—And Yet It Exists!

23.09.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>