Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting bacteria – with viruses

28.07.2014

Study reveals promising information for developing an alternative to antibiotics

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its resistance to antibiotics. The study, by scientists at the European Molecular Biology Laboratory (EMBL) in Hamburg, Germany, could help bring about a new way of fighting this and other bacteria.

“Our findings will help us to engineer effective, specific bacteriophages, not just for C. diff infections, but for a wide range of bacteria related to human health, agriculture and the food industry,” says Rob Meijers from EMBL, who led the work. C. diff infections, which can be fatal, are currently very difficult to treat, as the bacterium is particularly unresponsive to many antibiotics.

A possible solution would be not to use antibiotics, but instead employ bacteriophages – viruses which infect only bacteria. Scientists know that these viruses hijack a bacterium’s DNA-reading machinery and use it to create many new bacteriophages. These then start demolishing the bacterium’s cell wall. Once its wall begins to break down, the bacterial cell can no longer withstand its own internal pressure and explodes.

The newly formed viruses burst out to find new hosts and the bacterium is destroyed in the process.   To harness the power of bacteriophages and develop effective therapies against bacteria like C.diff, scientists need to know exactly how these viruses destroy bacterial cell walls. The viruses’ demolition machines, endolysins, are known, but just how these enzymes are activated was unclear – until now.

“These enzymes appear to switch from a tense, elongated shape, where a pair of endolysins are joined together, to a relaxed state where the two endolysins lie side-by-side,” explains Matthew Dunne who carried out the work. “The switch from one conformation to the other releases the active enzyme, which then begins to degrade the cell wall.”

Meijers and collaborators discovered the switch from ‘standby’ to ‘demolition’ mode by determining endolysins’ 3-dimensional structure, using X-ray crystallography and small angle X-ray scattering (SAXS) at the Deutsches Elektronen-Synchrotron (DESY). They compared the structures of endolysins from two different bacteriophages, which target different kinds of Clostridium bacteria: one infects C. diff, the other destroys a Clostridium species that causes defects in fermenting cheese.

Remarkably, the scientists found that the two endolysins share this common activation mechanism, despite being taken from different species of Clostridium. This, the team concludes, is an indicator that the switch between tense and relaxed enzymes is likely a widespread tactic, and could therefore be used to turn other viruses into allies in the fight against other antibiotic-resistant bacteria.

The work was performed in collaboration with Arjan Narbad’s lab at the Institute of Food Research in Norwich, UK, who tested how engineering mutations in the endolysins affected their ability to tear down the bacterial cell wall.

To be published online in PLoS Pathogens on 24 July 2014: http://dx.plos.org/10.1371/journal.ppat.1004228.

For images and for more information please visit: www.embl.org/downloads/2014/140724_Hamburg (username = press, password = images4u)

Policy regarding use EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made. 

Sonia Furtado Neves EMBL Press Officer & Deputy Head of Communications Meyerhofstr. 1, 69117 Heidelberg, Germany Tel.: +49 (0)6221 387 8263 Fax: +49 (0)6221 387 8525 sonia.furtado@embl.de http://s.embl.org/press

Sonia Furtado Neves | EMBL Press

Further reports about: Biology Clostridium EMBL Fighting Laboratory Molecular X-ray antibiotics bacteria bacterium enzymes infections species viruses

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>