Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Fight Against Pathogens, Calcium Helps Plants Make Their Own Aspirin

05.01.2009
Calcium builds strong bones, good teeth—and healthy plants, according to a new study from Washington State University.

Experiments show that calcium, when bound to a protein called calmodulin, prompts plants to make salicylic acid (SA) when threatened by infection or other danger. SA is a close chemical relative of aspirin. In plants, SA acts as a signal molecule that kicks off a series of reactions that help defend against external threats.

That plants make salicylic acid has been known for more than 100 years, said B.W. Poovaiah, Regents Professor and director of the study, but the role of calcium in signaling a plant to make SA has not been known before.

“We are now beginning to understand the molecular mechanism connecting the calcium/calmodulin signaling to plant immunity,” said Poovaiah.

The study will appear in an upcoming issue of the journal Nature and is now available online at http://dx.doi.org/10.1038/nature07612.

Poovaiah said that in controlling salicylic acid level, calcium acts like a gatekeeper within the cells of a plant, directing incoming information and helping the plant respond to such dangers as pathogen attacks. Normal, healthy plants have a low level of SA in their cells. That level rises when the plant is threatened by infection or environmental stress.

“When we expect danger, we try to take precautions,” said Poovaiah. “Plants cannot run away. Plants have to turn on their built-in system to protect themselves. The plant has to produce different signal molecules. One of them is salicylic acid.”

According to lead author, assistant research professor Liqun Du, SA sets off defensive measures within the plant, such as the “hypersensitive reaction” in which cells around an infection site die, forming a barrier that keeps the pathogen from invading deeper into the plant. That provides protection against the immediate threat. SA also activates the plant’s systemic acquired resistance, a form of immunity that protects the plant from further pathogen attacks.

But a rise in SA levels also causes the plant to slow its growth, perhaps saving its strength for the battle against the pathogen. That sets up a challenging situation for both the plant—grow faster or protect myself better?—and farmers, who might view SA as a tool to protect their plants from disease. A plant that makes high levels of SA all the time will be safe from infection but will grow slowly. A plant that makes little or no SA will grow like gangbusters but be very susceptible to infection.

“It’s a fine balance,” said Du. “Too much is bad; too little is bad.”

Working with the small mustard plant Arabidopsis thaliana, Poovaiah’s research team showed that the key step in this balancing act is the interaction between calcium/calmodulin and a protein called AtSR1, which suppresses the production of salicylic acid. Stress or infection causes a spike in calcium within the plant cells, which, in combination with calmodulin, acts as a specific signal controlling the activity of AtSR1 and the formation of SA.

In an environment with few pathogens, a plant will have low levels of SA. The plant lets its guard down and devotes more resources to growth. If it becomes infected, SA production goes up, and the plant dials back its growth and puts more resources into defense.

The importance of AtSR1 was especially clear in experiments in which plants were engineered to have more or less AtSR1 than normal. Plants that have extra AtSR1 make almost no SA. They grow larger and faster than a normal plant, but easily succumb to infection. Plants that lack the gene for AtSR1 develop high levels of SA and deploy their immune responses all the time. They are nearly impervious to infection, but small in size. The same is true of plants whose AtSR1 has been changed so it cannot bind to calcium/calmodulin, demonstrating the crucial role played in this system by calcium and calmodulin.

The paper is titled “Calcium/Calmodulin Regulates Salicylic Acid-mediated Immune Response in Plants through AtSR1/CAMTA3.”

Joe Poovaiah | Newswise Science News
Further information:
http://www.wsu.edu

Further reports about: Aspirin AtSR1 Calcium Pathogen Plants pathogens plant cell salicylic signal molecule

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>