Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against pathogen: plant geneticists make decisive breakthrough

30.10.2009
The Xanthomonas bacteria is the name of the pathogen that has led to the loss of many crops in Asia, America and many other hot and humid areas.

It attacks important cultivated plants such as rice, peppers, tomatoes and citrus fruits by manipulating the genes of these plants. Biologists at the Martin Luther University Halle-Wittenberg (MLU) have now figured out how the pathogen does this.

In this week's Science Express, the advance online version of the renowned Science magazine, they reveal the secret behind this special code that Xanthomonas uses to manipulate genes. Knowing this code is imperative when it comes to breeding resistant plants.

This seminal discovery has high application potential, particularly for biotechnology. "With the help of this study, factors could be developed for the first time that specifically regulate any type of plant gene," says Dr. Jens Boch, main author of the Science magazine's article. "We still have to see whether this principle works only with plants, or whether it can also be transferred to animals and people," Boch adds.

The scientists from the Institute of Biology at MLU discovered a new, unique patter after binding proteins from the causative agent to the DNA of the plant. "It works a bit like a zipper. In the right combination, these proteins target the DNA within the nucleus of the plant's cells," explains Prof. Ulla Bonas, director of the Department of Plant Genetics. With the help of this pattern - left undiscovered until now - proteins can now be manufactured which target specific areas of the DNA. "Up until now it was impossible to create a protein that precisely bound itself to a specific DNA sequence," Bonas emphasizes. In Science Express, the scientists from Halle prove that this is possible.

Xanthomonas uses a sophisticated strategy to colonize the plant. It injects proteins directly into the nucleus of the cells in order to manipulate the plant's gene activity. A large and important group of these proteins are so-called TAL effectors. Just how the TAL effectors were able to recognize the target gene of the plant they affected had been a puzzle. To their astonishment, Dr. Jens Boch and Dr. Sebastian Schornack, scientists at MLU, stumbled upon a direct correlation between individual modules in the effectors and the DNA building blocks. "The principle is extremely simple and therefore very elegant. A series of modules in the TAL proteins exactly matches the corresponding DNA building block sequence," Boch explains. Unlocking this code now allows predictions to be made as to how Xanthomonas triggers diseases in plants and through this, enables the breeding of disease resistant plants. The unique modular structure also enables proteins that bond with any type of DNA to be manufactured in a laboratory.

For twenty years, the Department of Plant Genetics at the MLU's Institute for Biology, headed by Prof. Ulla Bonas, has been researching into the interaction between Xanthomonas and pepper and tomato plants. She initiated the investigation of the pathogen which led to the deciphering of the code. In 2007 Bonas and her colleagues revealed in two "Science" publications that the protein AvrBs3 binds to DNA. The scientists at MLU have been funded by the German Research Foundation as part of the SPP 1212 program and the 648 collaborative research center.

The paper will be published online by the journal Science, at the Science Express web site, on Thursday, 29 October, 2009. See http://www.sciencexpress.org.

Additional images available upon request.

Contact:
Dr. Jens Boch
Institut of Biology
Section of Plant Genetics
Martin-Luther-University Halle-Wittenberg
Germany
Phone: (+49) 345 55 26292
E-Mail: jens.boch@genetik.uni-halle.de

Corinna Bertz | idw
Further information:
http://www.uni-halle.de
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>