Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against pathogen: plant geneticists make decisive breakthrough

30.10.2009
The Xanthomonas bacteria is the name of the pathogen that has led to the loss of many crops in Asia, America and many other hot and humid areas.

It attacks important cultivated plants such as rice, peppers, tomatoes and citrus fruits by manipulating the genes of these plants. Biologists at the Martin Luther University Halle-Wittenberg (MLU) have now figured out how the pathogen does this.

In this week's Science Express, the advance online version of the renowned Science magazine, they reveal the secret behind this special code that Xanthomonas uses to manipulate genes. Knowing this code is imperative when it comes to breeding resistant plants.

This seminal discovery has high application potential, particularly for biotechnology. "With the help of this study, factors could be developed for the first time that specifically regulate any type of plant gene," says Dr. Jens Boch, main author of the Science magazine's article. "We still have to see whether this principle works only with plants, or whether it can also be transferred to animals and people," Boch adds.

The scientists from the Institute of Biology at MLU discovered a new, unique patter after binding proteins from the causative agent to the DNA of the plant. "It works a bit like a zipper. In the right combination, these proteins target the DNA within the nucleus of the plant's cells," explains Prof. Ulla Bonas, director of the Department of Plant Genetics. With the help of this pattern - left undiscovered until now - proteins can now be manufactured which target specific areas of the DNA. "Up until now it was impossible to create a protein that precisely bound itself to a specific DNA sequence," Bonas emphasizes. In Science Express, the scientists from Halle prove that this is possible.

Xanthomonas uses a sophisticated strategy to colonize the plant. It injects proteins directly into the nucleus of the cells in order to manipulate the plant's gene activity. A large and important group of these proteins are so-called TAL effectors. Just how the TAL effectors were able to recognize the target gene of the plant they affected had been a puzzle. To their astonishment, Dr. Jens Boch and Dr. Sebastian Schornack, scientists at MLU, stumbled upon a direct correlation between individual modules in the effectors and the DNA building blocks. "The principle is extremely simple and therefore very elegant. A series of modules in the TAL proteins exactly matches the corresponding DNA building block sequence," Boch explains. Unlocking this code now allows predictions to be made as to how Xanthomonas triggers diseases in plants and through this, enables the breeding of disease resistant plants. The unique modular structure also enables proteins that bond with any type of DNA to be manufactured in a laboratory.

For twenty years, the Department of Plant Genetics at the MLU's Institute for Biology, headed by Prof. Ulla Bonas, has been researching into the interaction between Xanthomonas and pepper and tomato plants. She initiated the investigation of the pathogen which led to the deciphering of the code. In 2007 Bonas and her colleagues revealed in two "Science" publications that the protein AvrBs3 binds to DNA. The scientists at MLU have been funded by the German Research Foundation as part of the SPP 1212 program and the 648 collaborative research center.

The paper will be published online by the journal Science, at the Science Express web site, on Thursday, 29 October, 2009. See http://www.sciencexpress.org.

Additional images available upon request.

Contact:
Dr. Jens Boch
Institut of Biology
Section of Plant Genetics
Martin-Luther-University Halle-Wittenberg
Germany
Phone: (+49) 345 55 26292
E-Mail: jens.boch@genetik.uni-halle.de

Corinna Bertz | idw
Further information:
http://www.uni-halle.de
http://www.sciencexpress.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>