Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against pathogen: plant geneticists make decisive breakthrough

30.10.2009
The Xanthomonas bacteria is the name of the pathogen that has led to the loss of many crops in Asia, America and many other hot and humid areas.

It attacks important cultivated plants such as rice, peppers, tomatoes and citrus fruits by manipulating the genes of these plants. Biologists at the Martin Luther University Halle-Wittenberg (MLU) have now figured out how the pathogen does this.

In this week's Science Express, the advance online version of the renowned Science magazine, they reveal the secret behind this special code that Xanthomonas uses to manipulate genes. Knowing this code is imperative when it comes to breeding resistant plants.

This seminal discovery has high application potential, particularly for biotechnology. "With the help of this study, factors could be developed for the first time that specifically regulate any type of plant gene," says Dr. Jens Boch, main author of the Science magazine's article. "We still have to see whether this principle works only with plants, or whether it can also be transferred to animals and people," Boch adds.

The scientists from the Institute of Biology at MLU discovered a new, unique patter after binding proteins from the causative agent to the DNA of the plant. "It works a bit like a zipper. In the right combination, these proteins target the DNA within the nucleus of the plant's cells," explains Prof. Ulla Bonas, director of the Department of Plant Genetics. With the help of this pattern - left undiscovered until now - proteins can now be manufactured which target specific areas of the DNA. "Up until now it was impossible to create a protein that precisely bound itself to a specific DNA sequence," Bonas emphasizes. In Science Express, the scientists from Halle prove that this is possible.

Xanthomonas uses a sophisticated strategy to colonize the plant. It injects proteins directly into the nucleus of the cells in order to manipulate the plant's gene activity. A large and important group of these proteins are so-called TAL effectors. Just how the TAL effectors were able to recognize the target gene of the plant they affected had been a puzzle. To their astonishment, Dr. Jens Boch and Dr. Sebastian Schornack, scientists at MLU, stumbled upon a direct correlation between individual modules in the effectors and the DNA building blocks. "The principle is extremely simple and therefore very elegant. A series of modules in the TAL proteins exactly matches the corresponding DNA building block sequence," Boch explains. Unlocking this code now allows predictions to be made as to how Xanthomonas triggers diseases in plants and through this, enables the breeding of disease resistant plants. The unique modular structure also enables proteins that bond with any type of DNA to be manufactured in a laboratory.

For twenty years, the Department of Plant Genetics at the MLU's Institute for Biology, headed by Prof. Ulla Bonas, has been researching into the interaction between Xanthomonas and pepper and tomato plants. She initiated the investigation of the pathogen which led to the deciphering of the code. In 2007 Bonas and her colleagues revealed in two "Science" publications that the protein AvrBs3 binds to DNA. The scientists at MLU have been funded by the German Research Foundation as part of the SPP 1212 program and the 648 collaborative research center.

The paper will be published online by the journal Science, at the Science Express web site, on Thursday, 29 October, 2009. See http://www.sciencexpress.org.

Additional images available upon request.

Contact:
Dr. Jens Boch
Institut of Biology
Section of Plant Genetics
Martin-Luther-University Halle-Wittenberg
Germany
Phone: (+49) 345 55 26292
E-Mail: jens.boch@genetik.uni-halle.de

Corinna Bertz | idw
Further information:
http://www.uni-halle.de
http://www.sciencexpress.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>