Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight or flight – the zebrafish's eye decides

19.09.2014

The eye of a zebrafish larva can already distinguish between prey and predator

Red or green? Small or large? Fast or slow? Humans and animals rely on their visual organs to classify objects in their environment. Decisions about how we best respond to moving objects in our environment are often made very quickly and unconsciously. The size of a moving object is obviously an important criterion.


Small and large objects activate various circuits in the visual system of zebrafish larvae. This separation begins in the eye and probably decides the direction of the swimming behaviour.

© Max Planck Institute for Medical Research

The rapid speed of a response suggests that specialised neural circuits in the visual system are responsible for recognising important object properties. If they are activated, they trigger the "fight" or "flight" signal in the brain. Scientists at the Max Planck Institute for Medical Research in Heidelberg have now shed light on how such circuits, which are likely to be crucial in classifying objects by size, function in the brain of the zebrafish larva.

How does the brain decide which things in our complex environment require an immediate response from us? A key question in the animal kingdom is: "Is the object moving in my environment prey or predator?" - a question that requires a quick answer in an emergency. Evidently, the visual system manages to detect objects from the constantly changing distribution of light stimuli on the retina based on simple criteria and, if necessary, mobilise a rapid response directly. The basic mechanisms of object classification can be studied using zebrafish larva as the model system.

The larva's well-developed visual system allows it to catch small prey and avoid larger objects. The decision about whether the larva approaches or avoids the object is made on the basis of size. Researchers working with Johann Bollmann at the Max Planck Institute in Heidelberg have now been able to demonstrate that small and large stimuli, which trigger swimming movements in different directions, generate neural activity in neighbouring but different circuits in the fish's brain. The behaviour-related distinction in size thus begins in the ganglion cells of the eye.

The retina in the eye contains a variety of different ganglion cells which respond specifically to colour, size, movement or contrast, for example. However, little is understood about how these different messages travel via the optic nerve to the brain and are processed. The researchers were now able to identify such cells in a central area of the fish's brain - the tectum. These cells respond specifically to those object sizes that correspond to a small prey or a large troublemaker in the world of the zebrafish larva.

It turns out that the nerve endings of ganglion cells, which project into the tectum, respond differently to object size. Other cell types downstream in the tectum distinguish between small and large objects on the zebrafish's magnitude scale in their activity patterns, depending on the layer in which they receive their synaptic inputs.

"This suggests that the size classification process begins in the retina of the eye to subsequently classify the object that is seen in the tectum into the categories of 'small enough to count as prey' or 'sufficiently large to watch out for'. The fish larva then adapts its behaviour accordingly," says Johann Bollmann from the Max Planck Institute for Medical Research. The brains of mammals contain very similar structures that are crucially involved in the visual control of such targeted movements. This suggests that the functions of detecting objects and controlling actions are resolved in a similar way as they are in the small brain of the fish larva. 

Contact 

Original publication

 
Stephanie J. Preuss, Chintan A. Trivedi, Colette M. vom Berg-Maurer, Soojin Ryu, Johann H. Bollmann
Classification of object size in retinotectal microcircuits
Current Biology, 19 September 2014

Johann H. Bollmann | Max-Planck-Institute
Further information:
http://www.mpg.de/8416636/zebrafish-eye

Further reports about: Max Planck Institute Zebrafish activity ganglion cells larva stimuli visual system

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>