Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight or flight – the zebrafish's eye decides

19.09.2014

The eye of a zebrafish larva can already distinguish between prey and predator

Red or green? Small or large? Fast or slow? Humans and animals rely on their visual organs to classify objects in their environment. Decisions about how we best respond to moving objects in our environment are often made very quickly and unconsciously. The size of a moving object is obviously an important criterion.


Small and large objects activate various circuits in the visual system of zebrafish larvae. This separation begins in the eye and probably decides the direction of the swimming behaviour.

© Max Planck Institute for Medical Research

The rapid speed of a response suggests that specialised neural circuits in the visual system are responsible for recognising important object properties. If they are activated, they trigger the "fight" or "flight" signal in the brain. Scientists at the Max Planck Institute for Medical Research in Heidelberg have now shed light on how such circuits, which are likely to be crucial in classifying objects by size, function in the brain of the zebrafish larva.

How does the brain decide which things in our complex environment require an immediate response from us? A key question in the animal kingdom is: "Is the object moving in my environment prey or predator?" - a question that requires a quick answer in an emergency. Evidently, the visual system manages to detect objects from the constantly changing distribution of light stimuli on the retina based on simple criteria and, if necessary, mobilise a rapid response directly. The basic mechanisms of object classification can be studied using zebrafish larva as the model system.

The larva's well-developed visual system allows it to catch small prey and avoid larger objects. The decision about whether the larva approaches or avoids the object is made on the basis of size. Researchers working with Johann Bollmann at the Max Planck Institute in Heidelberg have now been able to demonstrate that small and large stimuli, which trigger swimming movements in different directions, generate neural activity in neighbouring but different circuits in the fish's brain. The behaviour-related distinction in size thus begins in the ganglion cells of the eye.

The retina in the eye contains a variety of different ganglion cells which respond specifically to colour, size, movement or contrast, for example. However, little is understood about how these different messages travel via the optic nerve to the brain and are processed. The researchers were now able to identify such cells in a central area of the fish's brain - the tectum. These cells respond specifically to those object sizes that correspond to a small prey or a large troublemaker in the world of the zebrafish larva.

It turns out that the nerve endings of ganglion cells, which project into the tectum, respond differently to object size. Other cell types downstream in the tectum distinguish between small and large objects on the zebrafish's magnitude scale in their activity patterns, depending on the layer in which they receive their synaptic inputs.

"This suggests that the size classification process begins in the retina of the eye to subsequently classify the object that is seen in the tectum into the categories of 'small enough to count as prey' or 'sufficiently large to watch out for'. The fish larva then adapts its behaviour accordingly," says Johann Bollmann from the Max Planck Institute for Medical Research. The brains of mammals contain very similar structures that are crucially involved in the visual control of such targeted movements. This suggests that the functions of detecting objects and controlling actions are resolved in a similar way as they are in the small brain of the fish larva. 

Contact 

Original publication

 
Stephanie J. Preuss, Chintan A. Trivedi, Colette M. vom Berg-Maurer, Soojin Ryu, Johann H. Bollmann
Classification of object size in retinotectal microcircuits
Current Biology, 19 September 2014

Johann H. Bollmann | Max-Planck-Institute
Further information:
http://www.mpg.de/8416636/zebrafish-eye

Further reports about: Max Planck Institute Zebrafish activity ganglion cells larva stimuli visual system

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>