Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight or flight – the zebrafish's eye decides

19.09.2014

The eye of a zebrafish larva can already distinguish between prey and predator

Red or green? Small or large? Fast or slow? Humans and animals rely on their visual organs to classify objects in their environment. Decisions about how we best respond to moving objects in our environment are often made very quickly and unconsciously. The size of a moving object is obviously an important criterion.


Small and large objects activate various circuits in the visual system of zebrafish larvae. This separation begins in the eye and probably decides the direction of the swimming behaviour.

© Max Planck Institute for Medical Research

The rapid speed of a response suggests that specialised neural circuits in the visual system are responsible for recognising important object properties. If they are activated, they trigger the "fight" or "flight" signal in the brain. Scientists at the Max Planck Institute for Medical Research in Heidelberg have now shed light on how such circuits, which are likely to be crucial in classifying objects by size, function in the brain of the zebrafish larva.

How does the brain decide which things in our complex environment require an immediate response from us? A key question in the animal kingdom is: "Is the object moving in my environment prey or predator?" - a question that requires a quick answer in an emergency. Evidently, the visual system manages to detect objects from the constantly changing distribution of light stimuli on the retina based on simple criteria and, if necessary, mobilise a rapid response directly. The basic mechanisms of object classification can be studied using zebrafish larva as the model system.

The larva's well-developed visual system allows it to catch small prey and avoid larger objects. The decision about whether the larva approaches or avoids the object is made on the basis of size. Researchers working with Johann Bollmann at the Max Planck Institute in Heidelberg have now been able to demonstrate that small and large stimuli, which trigger swimming movements in different directions, generate neural activity in neighbouring but different circuits in the fish's brain. The behaviour-related distinction in size thus begins in the ganglion cells of the eye.

The retina in the eye contains a variety of different ganglion cells which respond specifically to colour, size, movement or contrast, for example. However, little is understood about how these different messages travel via the optic nerve to the brain and are processed. The researchers were now able to identify such cells in a central area of the fish's brain - the tectum. These cells respond specifically to those object sizes that correspond to a small prey or a large troublemaker in the world of the zebrafish larva.

It turns out that the nerve endings of ganglion cells, which project into the tectum, respond differently to object size. Other cell types downstream in the tectum distinguish between small and large objects on the zebrafish's magnitude scale in their activity patterns, depending on the layer in which they receive their synaptic inputs.

"This suggests that the size classification process begins in the retina of the eye to subsequently classify the object that is seen in the tectum into the categories of 'small enough to count as prey' or 'sufficiently large to watch out for'. The fish larva then adapts its behaviour accordingly," says Johann Bollmann from the Max Planck Institute for Medical Research. The brains of mammals contain very similar structures that are crucially involved in the visual control of such targeted movements. This suggests that the functions of detecting objects and controlling actions are resolved in a similar way as they are in the small brain of the fish larva. 

Contact 

Original publication

 
Stephanie J. Preuss, Chintan A. Trivedi, Colette M. vom Berg-Maurer, Soojin Ryu, Johann H. Bollmann
Classification of object size in retinotectal microcircuits
Current Biology, 19 September 2014

Johann H. Bollmann | Max-Planck-Institute
Further information:
http://www.mpg.de/8416636/zebrafish-eye

Further reports about: Max Planck Institute Zebrafish activity ganglion cells larva stimuli visual system

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>