Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fic proteins regulate their potentially lethal enzyme activity

23.01.2012
Researchers at the Biozentrum of the University of Basel have been able to elucidate a regulatory mechanism conserved throughout evolution which forces the largely unexplored enzyme family of Fic proteins into an inactive resting state.

The research groups headed by Prof. Christoph Dehio and Prof. Tilman Schirmer could demonstrate that through the alteration of one single amino acid this inhibition of enzyme activity can be relieved. Their findings, which have been published in the current issue of «Nature», will enable to investigate the physiological role of the potentially lethal function of Fic proteins in bacteria and higher organisms in the future.


Left: Binding of the antitoxin (blue) inhibits AMPylation of the target protein (magenta) by the Fic protein (grey), which allows normal bacterial growth. Right: In the absence of the antitoxin the target protein gets AMPylated, resulting in inhibition of cell division and thus abnormal filamentous growth of bacteria. Illustration: Universität Basel

Fic proteins are found in most forms of life ranging from simple bacteria to man. Only a few representatives of this protein family of about 3000 members have been investigated to date. These are enzymes that chemically alter other proteins through the attachment of an adenosine monophosphate group (AMP) derived from the important energy carrier ATP. This reaction, known as AMPylation, specifically modifies the function of the target proteins.

The biochemically best understood Fic proteins are produced by pathogenic bacteria and injected into host cells to alter cellular signaling proteins to the advantage of the bacterial intruder. However, the far majority of Fic proteins have probably evolved a function that is instrumental for the cell in which they are produced. Why the biochemical function of only a few of these Fic proteins has been elucidated so far was not clear. The reason has now been found by the collaborating research groups of the infection biologist Prof. Christoph Dehio and the structural biologist Prof. Tilman Schirmer.

The Active Center of Fic Proteins is Blocked

The scientists could show that an amino acid residue (glutamate-finger) protrudes into the active center of the Fic proteins. This prevents productive binding of ATP and explains the inactivate ground state of the enzyme. Surprisingly, in some Fic proteins the inhibiting residue is part of the Fic protein itself, whereas in other cases it is provided by a separate protein (called antitoxin). It was shown that upon truncation of the glutamate-finger by genetic manipulation or removal of the entire antitoxin the activity of the enzyme is awakened – sometimes with drastic consequences for the affected cells. Bacterial cells no longer divide, while human cells can even die.

Interdisciplinary Research Success
The two research groups achieved this breakthrough by combining methods of microbiology, cell biology, structural biology and bioinformatics. The spatial atomic structures of Fic proteins were determined by X-ray crystallographic analyses carried out by the Schirmer Group at the Swiss Light Source (in Villigen) revealing the detailed geometry of the active center of the enzyme along with the inhibiting glutamate-finger. Dehio’s group, on the other hand, could demonstrate the inhibitory role of this glutamate-finger by using a combination of functional studies and mutagenesis and showed the overall significance of the discovery through extensive protein sequence comparisons.
Based on the gained insights, it has now become possible to investigate the biological role of many members of the vast Fic family. Furthermore, with this knowledge, scientists will now be able to search for the physiological signal of Fic activation in a directed way.

Original article
Philipp Engel, Arnaud Goepfert, Frédéric V. Stanger, Alexander Harms, Alexander Schmidt, Tilman Schirmer & Christoph Dehio
Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins
Nature, published online 22 January 2012 | doi: 10.1038/nature10729

Further Information
Prof. Dr. Christoph Dehio, Biozentrum, University of Basel, Tel. 061 267 21 40, Email: christoph.dehio@unibas.ch

Prof. Dr. Tilman Schirmer, Biozentrum, University of Basel, Tel. 061 267 28 89, Email: tilman.schirmer@unibas.ch

Heike Sacher | idw
Further information:
http://www.unibas.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10729.html

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>