Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fic proteins regulate their potentially lethal enzyme activity

23.01.2012
Researchers at the Biozentrum of the University of Basel have been able to elucidate a regulatory mechanism conserved throughout evolution which forces the largely unexplored enzyme family of Fic proteins into an inactive resting state.

The research groups headed by Prof. Christoph Dehio and Prof. Tilman Schirmer could demonstrate that through the alteration of one single amino acid this inhibition of enzyme activity can be relieved. Their findings, which have been published in the current issue of «Nature», will enable to investigate the physiological role of the potentially lethal function of Fic proteins in bacteria and higher organisms in the future.


Left: Binding of the antitoxin (blue) inhibits AMPylation of the target protein (magenta) by the Fic protein (grey), which allows normal bacterial growth. Right: In the absence of the antitoxin the target protein gets AMPylated, resulting in inhibition of cell division and thus abnormal filamentous growth of bacteria. Illustration: Universität Basel

Fic proteins are found in most forms of life ranging from simple bacteria to man. Only a few representatives of this protein family of about 3000 members have been investigated to date. These are enzymes that chemically alter other proteins through the attachment of an adenosine monophosphate group (AMP) derived from the important energy carrier ATP. This reaction, known as AMPylation, specifically modifies the function of the target proteins.

The biochemically best understood Fic proteins are produced by pathogenic bacteria and injected into host cells to alter cellular signaling proteins to the advantage of the bacterial intruder. However, the far majority of Fic proteins have probably evolved a function that is instrumental for the cell in which they are produced. Why the biochemical function of only a few of these Fic proteins has been elucidated so far was not clear. The reason has now been found by the collaborating research groups of the infection biologist Prof. Christoph Dehio and the structural biologist Prof. Tilman Schirmer.

The Active Center of Fic Proteins is Blocked

The scientists could show that an amino acid residue (glutamate-finger) protrudes into the active center of the Fic proteins. This prevents productive binding of ATP and explains the inactivate ground state of the enzyme. Surprisingly, in some Fic proteins the inhibiting residue is part of the Fic protein itself, whereas in other cases it is provided by a separate protein (called antitoxin). It was shown that upon truncation of the glutamate-finger by genetic manipulation or removal of the entire antitoxin the activity of the enzyme is awakened – sometimes with drastic consequences for the affected cells. Bacterial cells no longer divide, while human cells can even die.

Interdisciplinary Research Success
The two research groups achieved this breakthrough by combining methods of microbiology, cell biology, structural biology and bioinformatics. The spatial atomic structures of Fic proteins were determined by X-ray crystallographic analyses carried out by the Schirmer Group at the Swiss Light Source (in Villigen) revealing the detailed geometry of the active center of the enzyme along with the inhibiting glutamate-finger. Dehio’s group, on the other hand, could demonstrate the inhibitory role of this glutamate-finger by using a combination of functional studies and mutagenesis and showed the overall significance of the discovery through extensive protein sequence comparisons.
Based on the gained insights, it has now become possible to investigate the biological role of many members of the vast Fic family. Furthermore, with this knowledge, scientists will now be able to search for the physiological signal of Fic activation in a directed way.

Original article
Philipp Engel, Arnaud Goepfert, Frédéric V. Stanger, Alexander Harms, Alexander Schmidt, Tilman Schirmer & Christoph Dehio
Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins
Nature, published online 22 January 2012 | doi: 10.1038/nature10729

Further Information
Prof. Dr. Christoph Dehio, Biozentrum, University of Basel, Tel. 061 267 21 40, Email: christoph.dehio@unibas.ch

Prof. Dr. Tilman Schirmer, Biozentrum, University of Basel, Tel. 061 267 28 89, Email: tilman.schirmer@unibas.ch

Heike Sacher | idw
Further information:
http://www.unibas.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10729.html

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>