Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Fic proteins regulate their potentially lethal enzyme activity

23.01.2012
Researchers at the Biozentrum of the University of Basel have been able to elucidate a regulatory mechanism conserved throughout evolution which forces the largely unexplored enzyme family of Fic proteins into an inactive resting state.

The research groups headed by Prof. Christoph Dehio and Prof. Tilman Schirmer could demonstrate that through the alteration of one single amino acid this inhibition of enzyme activity can be relieved. Their findings, which have been published in the current issue of «Nature», will enable to investigate the physiological role of the potentially lethal function of Fic proteins in bacteria and higher organisms in the future.


Left: Binding of the antitoxin (blue) inhibits AMPylation of the target protein (magenta) by the Fic protein (grey), which allows normal bacterial growth. Right: In the absence of the antitoxin the target protein gets AMPylated, resulting in inhibition of cell division and thus abnormal filamentous growth of bacteria. Illustration: Universität Basel

Fic proteins are found in most forms of life ranging from simple bacteria to man. Only a few representatives of this protein family of about 3000 members have been investigated to date. These are enzymes that chemically alter other proteins through the attachment of an adenosine monophosphate group (AMP) derived from the important energy carrier ATP. This reaction, known as AMPylation, specifically modifies the function of the target proteins.

The biochemically best understood Fic proteins are produced by pathogenic bacteria and injected into host cells to alter cellular signaling proteins to the advantage of the bacterial intruder. However, the far majority of Fic proteins have probably evolved a function that is instrumental for the cell in which they are produced. Why the biochemical function of only a few of these Fic proteins has been elucidated so far was not clear. The reason has now been found by the collaborating research groups of the infection biologist Prof. Christoph Dehio and the structural biologist Prof. Tilman Schirmer.

The Active Center of Fic Proteins is Blocked

The scientists could show that an amino acid residue (glutamate-finger) protrudes into the active center of the Fic proteins. This prevents productive binding of ATP and explains the inactivate ground state of the enzyme. Surprisingly, in some Fic proteins the inhibiting residue is part of the Fic protein itself, whereas in other cases it is provided by a separate protein (called antitoxin). It was shown that upon truncation of the glutamate-finger by genetic manipulation or removal of the entire antitoxin the activity of the enzyme is awakened – sometimes with drastic consequences for the affected cells. Bacterial cells no longer divide, while human cells can even die.

Interdisciplinary Research Success
The two research groups achieved this breakthrough by combining methods of microbiology, cell biology, structural biology and bioinformatics. The spatial atomic structures of Fic proteins were determined by X-ray crystallographic analyses carried out by the Schirmer Group at the Swiss Light Source (in Villigen) revealing the detailed geometry of the active center of the enzyme along with the inhibiting glutamate-finger. Dehio’s group, on the other hand, could demonstrate the inhibitory role of this glutamate-finger by using a combination of functional studies and mutagenesis and showed the overall significance of the discovery through extensive protein sequence comparisons.
Based on the gained insights, it has now become possible to investigate the biological role of many members of the vast Fic family. Furthermore, with this knowledge, scientists will now be able to search for the physiological signal of Fic activation in a directed way.

Original article
Philipp Engel, Arnaud Goepfert, Frédéric V. Stanger, Alexander Harms, Alexander Schmidt, Tilman Schirmer & Christoph Dehio
Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins
Nature, published online 22 January 2012 | doi: 10.1038/nature10729

Further Information
Prof. Dr. Christoph Dehio, Biozentrum, University of Basel, Tel. 061 267 21 40, Email: christoph.dehio@unibas.ch

Prof. Dr. Tilman Schirmer, Biozentrum, University of Basel, Tel. 061 267 28 89, Email: tilman.schirmer@unibas.ch

Heike Sacher | idw
Further information:
http://www.unibas.ch
http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature10729.html

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>