Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts invade at a snail's pace

03.02.2009
Study finds Snail1 may spur cancer cells by stimulating tissue invasion and angiogenesis

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue of the Journal of Cell Biology.

The conversion of epithelial cells into fibroblast-like mesenchymal cells is a critical event in both normal development and cancer. The transcription factor Snail1 induces this conversion (known as epithelial–mesenchymal transition, or EMT) by repressing the expression of epithelial-specific genes. Little was known about Snail1's role after EMT, although the transcription factor is up-regulated in mesenchymal tissue surrounding tumors and wounds.

Because Snail1 expression is thought to be required for maintenance of the mesenchymal phenotype in cancer, Rowe et al. were surprised to see that normal fibroblasts retained many mesenchymal characteristics when Snail1 was removed. The authors did find, however, that many genes important for cell motility, such as actin-binding proteins and matrix metalloproteinases, were expressed at lower levels in fibroblasts lacking Snail1.

Cells invade tissues by sending out actin-rich protrusions called invadopodia that contain proteolytic enzymes that degrade the surrounding extracellular matrix (ECM). Fibroblasts without Snail1 formed fewer invadopodia and were less able to degrade the ECM. Rowe et al. transplanted the Snail1-deficient fibroblasts into chick embryos and found that they were completely unable to penetrate the basement membrane and the complex mix of ECM proteins beneath. Moreover, unlike wild-type fibroblasts, Snail1-deficient cells didn't stimulate the ingrowth of new blood vessels—another key function of fibroblasts during wound healing and tissue remodeling.

The team thinks that in addition to its role in EMT, Snail1 also acts as a master regulator of fibroblast function. In cancer cells, says author Grant Rowe, sustained Snail1 expression may not only cause a loss of epithelial markers but also promote tumor aggression by stimulating tissue invasion and angiogenesis.

Rita Sullivan | EurekAlert!
Further information:
http://www.rockefeller.edu
http://www.jcb.org

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>