Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts invade at a snail's pace

03.02.2009
Study finds Snail1 may spur cancer cells by stimulating tissue invasion and angiogenesis

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue of the Journal of Cell Biology.

The conversion of epithelial cells into fibroblast-like mesenchymal cells is a critical event in both normal development and cancer. The transcription factor Snail1 induces this conversion (known as epithelial–mesenchymal transition, or EMT) by repressing the expression of epithelial-specific genes. Little was known about Snail1's role after EMT, although the transcription factor is up-regulated in mesenchymal tissue surrounding tumors and wounds.

Because Snail1 expression is thought to be required for maintenance of the mesenchymal phenotype in cancer, Rowe et al. were surprised to see that normal fibroblasts retained many mesenchymal characteristics when Snail1 was removed. The authors did find, however, that many genes important for cell motility, such as actin-binding proteins and matrix metalloproteinases, were expressed at lower levels in fibroblasts lacking Snail1.

Cells invade tissues by sending out actin-rich protrusions called invadopodia that contain proteolytic enzymes that degrade the surrounding extracellular matrix (ECM). Fibroblasts without Snail1 formed fewer invadopodia and were less able to degrade the ECM. Rowe et al. transplanted the Snail1-deficient fibroblasts into chick embryos and found that they were completely unable to penetrate the basement membrane and the complex mix of ECM proteins beneath. Moreover, unlike wild-type fibroblasts, Snail1-deficient cells didn't stimulate the ingrowth of new blood vessels—another key function of fibroblasts during wound healing and tissue remodeling.

The team thinks that in addition to its role in EMT, Snail1 also acts as a master regulator of fibroblast function. In cancer cells, says author Grant Rowe, sustained Snail1 expression may not only cause a loss of epithelial markers but also promote tumor aggression by stimulating tissue invasion and angiogenesis.

Rita Sullivan | EurekAlert!
Further information:
http://www.rockefeller.edu
http://www.jcb.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>