Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FHL1 helps build muscle mass

16.12.2008
New research points to possible treatments for muscle wasting disorders

Cowling et al. report how to build muscle mass with FHL1. The protein partners with and activates the transcription factor, NFATc1. Encouraging this partnership might provide a possible treatment for muscle wasting disorders. The article will appear in the December 15, 2008 issue of The Journal of Cell Biology (JCB).

Mutations in FHL1 are present in several myopathies, including reducing-body myopathy (RBM), but until now, both the molecular mechanisms causing the disease, and the regular function of FHL1 in healthy tissue, remained unknown.

To address this, Cowling et al. overexpressed FHL1 in both transgenic mice and cultured myoblasts. The mice developed skeletal muscle hypertrophy, and showed increased strength and endurance. Overexpression in myoblasts also increased cell fusion, resulting in hypertrophic myotubes. These phenotypes are similar to those caused by the calcineurin/NFAT pathway and, indeed, inhibiting calcineurin blocked the effects of FHL1 overexpression in vitro. The authors showed that FHL1 binds to and enhances the transcriptional activity of NFATc1 in vitro and in vivo.

So what goes wrong when FHL1 is mutated? In RBM, mutant FHL1 accumulates in cytoplasmic aggregates called reducing bodies, probably as a result of misfolding. When these mutants were expressed in cultured myoblasts, they also aggregated, and did not induce hypertrophy. Cowling and colleagues found that NFATc1 was sequestered to the aggregates, and was therefore unable to activate its target genes.

Rita Sullivan | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>