Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal exposure to PVC plastic chemical linked to obesity in offspring

15.01.2013
UCI study identifies transgenerational effects of obesogen compound tributyltin

Exposing pregnant mice to low doses of the chemical tributyltin – which is used in marine hull paint and PVC plastic – can lead to obesity for multiple generations without subsequent exposure, a UC Irvine study has found.

After exposing pregnant mice to TBT in concentrations similar to those found in the environment, researchers saw increased body fat, liver fat and fat-specific gene expression in their "children," "grandchildren" and "great-grandchildren" – none of which had been exposed to the chemical.

These findings suggest that early-life exposure to endocrine-disrupting compounds such as TBT can have permanent effects of fat accumulation without further exposure, said study leader Bruce Blumberg, UC Irvine professor of pharmaceutical sciences and developmental & cell biology. These effects appear to be inherited without DNA mutations occurring.

The study appears online Jan. 15 in Environmental Health Perspectives, a publication of the National Institute for Environmental Health Sciences.

Human exposure to TBT can occur through PVC plastic particles in dust and via leaching of the chemical and other related organotin compounds from PVC pipes and containers.

Significant levels of TBT have been reported in house dust – which is particularly relevant for young children who may spend significant time on floors and carpets. Some people are exposed by ingesting seafood contaminated with TBT, which has been used in marine hull paint and is pervasive in the environment.

Blumberg categorizes TBT as an obesogen, a class of chemicals that promote obesity by increasing the number of fat cells or the storage of fat in existing cells. He and his colleagues first identified the role of obesogens in a 2006 publication and showed in 2010 that TBT acts in part by modifying the fate of mesenchymal stem cells during development, predisposing them to become fat cells.

UC Irvine developmental & cell biology postdoctoral fellow Raquel Chamorro Garcia undergraduate student Margaret Sahu and former students Rachelle Abbey, Jhyme Laude and Nhieu Pham contributed to the current study, which was supported by the National Institutes of Health (grants ES-015849 and ES-015849-01S1).

About the University of California, Irvine: Founded in 1965, UC Irvine is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UC Irvine is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County's second-largest employer, UC Irvine contributes an annual economic impact of $4.3 billion. For more UC Irvine news, visit news.uci.edu.

News Radio: UC Irvine maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UC Irvine faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:

Tom Vasich
949-824-6455
tmvasich@uci.edu
UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Environmental Health ISDN PVC TBT cell biology environmental risk fat cells fetal health services

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>