Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal exposure to PVC plastic chemical linked to obesity in offspring

15.01.2013
UCI study identifies transgenerational effects of obesogen compound tributyltin

Exposing pregnant mice to low doses of the chemical tributyltin – which is used in marine hull paint and PVC plastic – can lead to obesity for multiple generations without subsequent exposure, a UC Irvine study has found.

After exposing pregnant mice to TBT in concentrations similar to those found in the environment, researchers saw increased body fat, liver fat and fat-specific gene expression in their "children," "grandchildren" and "great-grandchildren" – none of which had been exposed to the chemical.

These findings suggest that early-life exposure to endocrine-disrupting compounds such as TBT can have permanent effects of fat accumulation without further exposure, said study leader Bruce Blumberg, UC Irvine professor of pharmaceutical sciences and developmental & cell biology. These effects appear to be inherited without DNA mutations occurring.

The study appears online Jan. 15 in Environmental Health Perspectives, a publication of the National Institute for Environmental Health Sciences.

Human exposure to TBT can occur through PVC plastic particles in dust and via leaching of the chemical and other related organotin compounds from PVC pipes and containers.

Significant levels of TBT have been reported in house dust – which is particularly relevant for young children who may spend significant time on floors and carpets. Some people are exposed by ingesting seafood contaminated with TBT, which has been used in marine hull paint and is pervasive in the environment.

Blumberg categorizes TBT as an obesogen, a class of chemicals that promote obesity by increasing the number of fat cells or the storage of fat in existing cells. He and his colleagues first identified the role of obesogens in a 2006 publication and showed in 2010 that TBT acts in part by modifying the fate of mesenchymal stem cells during development, predisposing them to become fat cells.

UC Irvine developmental & cell biology postdoctoral fellow Raquel Chamorro Garcia undergraduate student Margaret Sahu and former students Rachelle Abbey, Jhyme Laude and Nhieu Pham contributed to the current study, which was supported by the National Institutes of Health (grants ES-015849 and ES-015849-01S1).

About the University of California, Irvine: Founded in 1965, UC Irvine is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UC Irvine is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County's second-largest employer, UC Irvine contributes an annual economic impact of $4.3 billion. For more UC Irvine news, visit news.uci.edu.

News Radio: UC Irvine maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UC Irvine faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:

Tom Vasich
949-824-6455
tmvasich@uci.edu
UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Environmental Health ISDN PVC TBT cell biology environmental risk fat cells fetal health services

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>