Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilizer chemicals linked to animal developmental woes

30.08.2010
Fertilizer chemicals may pose a bigger hazard to the environment – specifically to creatures that live in water – than originally foreseen, according to new research from North Carolina State University toxicologists.

In a study published in the Aug. 27 edition of PLoS One, the NC State researchers show that water fleas take up nitrates and nitrites – common chemicals used primarily in agriculture as fertilizers – and convert those chemicals into nitric oxide. Nitric oxide can be toxic to many organisms.

The study shows that water fleas introduced to fertilizer chemicals in water were plagued with developmental and reproductive problems consistent with nitric oxide toxicity, even at what would be considered low concentrations.

This raises questions about the effect these chemicals may have on other organisms, says Dr. Gerald LeBlanc, professor of environmental and molecular toxicology at NC State and the corresponding author of the paper describing the results. He adds that additional research will be needed to explore those questions.

LeBlanc says that some of the study's results were surprising.

"There's only limited evidence to suggest that animals could convert nitrates and nitrites to nitric oxide, although plants can," he says. "Since animals and plants don't have the same cellular machinery for this conversion, it appears animals use different machinery for this conversion to occur."

LeBlanc was also dismayed at seeing toxic effects at low chemical concentrations.

"Nitrite concentrations in water vary across the United States, but commonly fall within 1 to 2 milligrams per liter of water," he says. "We saw negative effects to water fleas at approximately 0.3 milligrams per liter of water."

Harmful effects of nitric oxide included developmental delay – water flea babies were born on schedule but were underdeveloped; some lacked appendages important for swimming, for instance.

LeBlanc now plans to identify the mechanism behind nitric oxide's toxic effects; evaluate the relationship between nitrite and nitrate concentrations in the environment and developmental toxicity; and consider possible risks to humans.

"It's not possible to eliminate nitrates and nitrites from our lives – they do wonders in agricultural crop production," LeBlanc says. "But we can take measures to ensure that the benefits of these chemicals outweigh their risks by keeping them out of surface waters."

The research was funded by the Environmental Protection Agency and the National Science Foundation.

The Department of Environmental and Molecular Toxicology is part of the university's College of Agriculture and Life Sciences.

Note to editors: An abstract of the paper follows.

"Intracellular Conversion of Environmental Nitrate and Nitrite to Nitric Oxide With Resulting Developmental Toxicity"
Authors: Bethany R. Hannas, Parikshit C. Das, Hong Li and Gerald A. LeBlanc, North Carolina State University

Published: Aug. 27, 2010, in PLoS One

Abstract: Nitrate and nitrite (jointly referred to herein as NOx) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NOx undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes. These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO3) and nitrite (NO2) to nitric oxide using amperometric real-time nitric oxide detection. Both NO3 and NO2 were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO2 to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium bitroprusside (positive control) and to concentrations of NO3 and NO2. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteriod signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteriod titers. Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

Dr. Gerald LeBlanc | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>