Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertilizer chemicals linked to animal developmental woes

30.08.2010
Fertilizer chemicals may pose a bigger hazard to the environment – specifically to creatures that live in water – than originally foreseen, according to new research from North Carolina State University toxicologists.

In a study published in the Aug. 27 edition of PLoS One, the NC State researchers show that water fleas take up nitrates and nitrites – common chemicals used primarily in agriculture as fertilizers – and convert those chemicals into nitric oxide. Nitric oxide can be toxic to many organisms.

The study shows that water fleas introduced to fertilizer chemicals in water were plagued with developmental and reproductive problems consistent with nitric oxide toxicity, even at what would be considered low concentrations.

This raises questions about the effect these chemicals may have on other organisms, says Dr. Gerald LeBlanc, professor of environmental and molecular toxicology at NC State and the corresponding author of the paper describing the results. He adds that additional research will be needed to explore those questions.

LeBlanc says that some of the study's results were surprising.

"There's only limited evidence to suggest that animals could convert nitrates and nitrites to nitric oxide, although plants can," he says. "Since animals and plants don't have the same cellular machinery for this conversion, it appears animals use different machinery for this conversion to occur."

LeBlanc was also dismayed at seeing toxic effects at low chemical concentrations.

"Nitrite concentrations in water vary across the United States, but commonly fall within 1 to 2 milligrams per liter of water," he says. "We saw negative effects to water fleas at approximately 0.3 milligrams per liter of water."

Harmful effects of nitric oxide included developmental delay – water flea babies were born on schedule but were underdeveloped; some lacked appendages important for swimming, for instance.

LeBlanc now plans to identify the mechanism behind nitric oxide's toxic effects; evaluate the relationship between nitrite and nitrate concentrations in the environment and developmental toxicity; and consider possible risks to humans.

"It's not possible to eliminate nitrates and nitrites from our lives – they do wonders in agricultural crop production," LeBlanc says. "But we can take measures to ensure that the benefits of these chemicals outweigh their risks by keeping them out of surface waters."

The research was funded by the Environmental Protection Agency and the National Science Foundation.

The Department of Environmental and Molecular Toxicology is part of the university's College of Agriculture and Life Sciences.

Note to editors: An abstract of the paper follows.

"Intracellular Conversion of Environmental Nitrate and Nitrite to Nitric Oxide With Resulting Developmental Toxicity"
Authors: Bethany R. Hannas, Parikshit C. Das, Hong Li and Gerald A. LeBlanc, North Carolina State University

Published: Aug. 27, 2010, in PLoS One

Abstract: Nitrate and nitrite (jointly referred to herein as NOx) are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NOx undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes. These experiments were performed with insect cells (Drosophila S2) and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO3) and nitrite (NO2) to nitric oxide using amperometric real-time nitric oxide detection. Both NO3 and NO2 were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO2 to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium bitroprusside (positive control) and to concentrations of NO3 and NO2. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteriod signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteriod titers. Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

Dr. Gerald LeBlanc | EurekAlert!
Further information:
http://www.ncsu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>