Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertile corals discovered in deeper waters off US Virgin Islands

22.07.2015

Researchers find reproductive refuge for threatened coral species

Researchers discovered a threatened coral species that lives in deeper waters off the U.S. Virgin Islands is more fertile than its shallow-water counterparts. The new study showed that mountainous star corals (Orbicella faveolata) located at nearly 140 feet (43 meters) deep may produce one trillion more eggs per square kilometer (247 acres) than those on shallow reefs.


Diverse and vibrant deep coral reefs of the Grammanik Bank, St. Thomas, US Virgin Islands are shown. The dominant corals are boulder star corals (Orbicella franksi). The two groupers are yellowfin groupers (Mycteroperca venenosa).

Credit: Tyler B Smith - April 22, 2012

The findings from scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science and the University of the Virgin Islands have important implications for the future of coral reefs worldwide.

Caribbean coral reefs have declined 50 percent in the past 50 years, according to the 2014 Status and Trends of Caribbean Coral Reefs report. In 2005, coral reefs in the U.S. Virgin Islands were severely impacted by high temperatures and disease.

"Coastal pollution, storms, and warm water can stress a coral out, which is why we're looking at what's going on in deeper offshore habitats," said Daniel Holstein, a UM Rosenstiel School alumnus and current post-doctorate researcher at the University of the Virgin Islands. "These deeper habitats tend to be cooler and less strenuous for corals - and thus, coral spawning may be more spectacular."

Mountainous star corals reproduce by broadcast spawning, where corals release their eggs and sperm in the water during a highly synchronized event. The researchers used remote cameras at a field site off the island of St. Thomas and laboratory observations during broadcast spawning events to show that the mesophotic corals, which live in deeper reef waters typically between 30 -150 meters (98 - 492 feet), released their eggs in near synchrony with shallow-water corals.

"The reefs that produce more larvae are more likely to be successful in seeding the reefs with their offspring," said Claire Paris, associate professor of ocean sciences at the UM Rosenstiel School and co-author of the study. "Protecting these potent reproductive deep refuges could represent the key to the survival of coral reefs for future generations."

Mesophotic coral ecosystems are buffered from environmental disturbances due to their depth and distance from shore. These deeper coral reef ecosystems may offer reproductive refuge to neighboring shallow-water coral reefs that are in decline, according to the research team.

"These deep reefs offer a glimmer of hope," said Tyler Smith, research associate professor at the University of the Virgin Islands. "They may be an incredible resource for the U.S. Virgin Islands, and for the entire Caribbean, if they can supply consistent sources of coral larvae."

The study, titled "Fertile fathoms: Deep reproductive refugia for threatened shallow corals," was published in the July 21, 2015 issue of Nature Publishing Group's journal Scientific Reports. The co-authors include: Daniel M. Holstein and Tyler B. Smith of the University of the Virgin Islands; Claire B. Paris of the UM Rosenstiel School; and Joanna Gyory of Tulane University. The study was funded by the National Science Foundation - Virgin Islands Experimental Program, ROA #0814417 and the Black Coral Penalty Fund ROA #260225. Additional funding was provided by Natural Environmental Research Council (NERC) subcontract to Paris from Exeter University: "Climate change and habitat fragmentation in coral reef ecosystems" and NSF OCE-0928423 to Paris and historical work funded by Paris Lab. The study and supplementary video may be accessed here: http://www.nature.com/articles/srep12407

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

Further reports about: Atmospheric Caribbean Fertile coral reef coral reefs corals ecosystems reef ecosystems

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>