Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fertile corals discovered in deeper waters off US Virgin Islands

22.07.2015

Researchers find reproductive refuge for threatened coral species

Researchers discovered a threatened coral species that lives in deeper waters off the U.S. Virgin Islands is more fertile than its shallow-water counterparts. The new study showed that mountainous star corals (Orbicella faveolata) located at nearly 140 feet (43 meters) deep may produce one trillion more eggs per square kilometer (247 acres) than those on shallow reefs.


Diverse and vibrant deep coral reefs of the Grammanik Bank, St. Thomas, US Virgin Islands are shown. The dominant corals are boulder star corals (Orbicella franksi). The two groupers are yellowfin groupers (Mycteroperca venenosa).

Credit: Tyler B Smith - April 22, 2012

The findings from scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science and the University of the Virgin Islands have important implications for the future of coral reefs worldwide.

Caribbean coral reefs have declined 50 percent in the past 50 years, according to the 2014 Status and Trends of Caribbean Coral Reefs report. In 2005, coral reefs in the U.S. Virgin Islands were severely impacted by high temperatures and disease.

"Coastal pollution, storms, and warm water can stress a coral out, which is why we're looking at what's going on in deeper offshore habitats," said Daniel Holstein, a UM Rosenstiel School alumnus and current post-doctorate researcher at the University of the Virgin Islands. "These deeper habitats tend to be cooler and less strenuous for corals - and thus, coral spawning may be more spectacular."

Mountainous star corals reproduce by broadcast spawning, where corals release their eggs and sperm in the water during a highly synchronized event. The researchers used remote cameras at a field site off the island of St. Thomas and laboratory observations during broadcast spawning events to show that the mesophotic corals, which live in deeper reef waters typically between 30 -150 meters (98 - 492 feet), released their eggs in near synchrony with shallow-water corals.

"The reefs that produce more larvae are more likely to be successful in seeding the reefs with their offspring," said Claire Paris, associate professor of ocean sciences at the UM Rosenstiel School and co-author of the study. "Protecting these potent reproductive deep refuges could represent the key to the survival of coral reefs for future generations."

Mesophotic coral ecosystems are buffered from environmental disturbances due to their depth and distance from shore. These deeper coral reef ecosystems may offer reproductive refuge to neighboring shallow-water coral reefs that are in decline, according to the research team.

"These deep reefs offer a glimmer of hope," said Tyler Smith, research associate professor at the University of the Virgin Islands. "They may be an incredible resource for the U.S. Virgin Islands, and for the entire Caribbean, if they can supply consistent sources of coral larvae."

The study, titled "Fertile fathoms: Deep reproductive refugia for threatened shallow corals," was published in the July 21, 2015 issue of Nature Publishing Group's journal Scientific Reports. The co-authors include: Daniel M. Holstein and Tyler B. Smith of the University of the Virgin Islands; Claire B. Paris of the UM Rosenstiel School; and Joanna Gyory of Tulane University. The study was funded by the National Science Foundation - Virgin Islands Experimental Program, ROA #0814417 and the Black Coral Penalty Fund ROA #260225. Additional funding was provided by Natural Environmental Research Council (NERC) subcontract to Paris from Exeter University: "Climate change and habitat fragmentation in coral reef ecosystems" and NSF OCE-0928423 to Paris and historical work funded by Paris Lab. The study and supplementary video may be accessed here: http://www.nature.com/articles/srep12407

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

Further reports about: Atmospheric Caribbean Fertile coral reef coral reefs corals ecosystems reef ecosystems

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>