Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ferrets, pigs susceptible to H7N9 avian influenza virus

NIH-funded study examined transmissibility of emerging virus

Chinese and U.S. scientists have used virus isolated from a person who died from H7N9 avian influenza infection to determine whether the virus could infect and be transmitted between ferrets. Ferrets are often used as a mammalian model in influenza research, and efficient transmission of influenza virus between ferrets can provide clues as to how well the same process might occur in people. The research was supported, in part, by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

The researchers dropped H7N9 virus into the noses of six ferrets. A day later, three uninfected ferrets were placed inside cages with the infected animals, and another three uninfected ferrets were placed in cages nearby. All the uninfected ferrets inside the cages became infected, while only one of three placed in nearby cages became infected.

The team concluded that the virus can infect ferrets and be transmitted between ferrets both by direct contact and, less efficiently, by air. The scientists detected viral material in the nasal secretions of the ferrets at least one day before clinical signs of disease became apparent. The potential public health implication of this observation is that a person infected by H7N9 avian influenza virus who does not show symptoms could nevertheless spread the virus to others.

The researchers also infected pigs with the human-derived H7N9 virus. In natural settings, pigs can act as a virtual mixing bowl to combine avian- and mammalian-specific influenza strains, potentially allowing avian strains to better adapt to humans. New strains arising from such mixing have the potential to infect humans and spark a pandemic, so information about swine susceptibility to H7N9 could help scientists gauge the pandemic potential of the avian virus.

Unlike the ferrets, infected pigs in this small study did not transmit virus to uninfected pigs, either through direct contact or by air. All the infected ferrets and pigs showed mild signs of illness, such as sneezing, nasal discharge, and lethargy, but none of the infected animals became seriously ill.

H Zhu et al. Infectivity, transmission and pathogenesis of human-isolated H7N9 influenza virus in ferrets and pigs. Science DOI: 10.1126/science.1239844 (2013).
NIAID Director Anthony S. Fauci, M.D., is available to discuss this research.
schedule interviews, please contact Anne A. Oplinger, (301) 402-1663,

This research was supported, in part, through contract HSN266200700005C.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at

About the National Institutes of Health (NIH):

NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

NIH...Turning Discovery Into Health

Anne A. Oplinger | EurekAlert!
Further information:

Further reports about: H7N9 Infectious Diseases NIH health services influenza virus medical research

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>