Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermentation of cocoa beans requires precise collaboration among 2 bacteria, and yeast

11.06.2014

Good chocolate is among the world's most beloved foods, which is why scientists are seeking to improve the product, and enhance the world's pleasure.

A team of researchers from Germany and Switzerland—the heartland of fine chocolate—have embarked upon a quest to better understand natural cocoa fermentation and have published findings ahead of print in the journal Applied and Environmental Microbiology.

"Our studies have unraveled the metabolism of the rather unexplored acetic acid bacteria in the complex fermentation environment," says corresponding author Christoph Wittmann of Saarland University, Saarbruecken, Germany

In the study, Wittmann and his collaborators from the Nestle Research Centre, Lausanne, Switzerland, simulated cocoa pulp fermentation in the laboratory. They mapped metabolic pathway fluxes of the acetic acid bacteria, feeding them specific isotopes that could easily be tracked. Wittmann compares the process to viewing the flows of city traffic from the sky.

"We could see what they eat and how they use the nutrients to fuel the different parts of their metabolism in order to grow and produce extracellular products," he says.

The key molecule to initiate flavor development is acetate, says Wittmann, noting that "The intensity of the aroma from a fermented bean is amazing."

Production of acetate requires two major nutrients: lactate and ethanol. These are produced by lactic acid bacteria, and yeast, respectively, during the initial fermentation of cocoa pulp sugars, says Wittmann.

The acetic acid bacteria then process these simultaneously, via separate metabolic pathways, ultimately producing acetate from them.

"This discovery reveals a fine-tuned collaboration of a multi-species consortium during cocoa fermentation," says Wittman. And that may help improve selection of natural strains for better-balanced starter cultures.

###

The manuscript can be found online at http://bit.ly/asmtip0614b. The final version of the article is scheduled for the August 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!

Further reports about: Environmental Fermentation bacteria beans cocoa metabolic metabolism nutrients

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>