Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermentation of cocoa beans requires precise collaboration among 2 bacteria, and yeast

11.06.2014

Good chocolate is among the world's most beloved foods, which is why scientists are seeking to improve the product, and enhance the world's pleasure.

A team of researchers from Germany and Switzerland—the heartland of fine chocolate—have embarked upon a quest to better understand natural cocoa fermentation and have published findings ahead of print in the journal Applied and Environmental Microbiology.

"Our studies have unraveled the metabolism of the rather unexplored acetic acid bacteria in the complex fermentation environment," says corresponding author Christoph Wittmann of Saarland University, Saarbruecken, Germany

In the study, Wittmann and his collaborators from the Nestle Research Centre, Lausanne, Switzerland, simulated cocoa pulp fermentation in the laboratory. They mapped metabolic pathway fluxes of the acetic acid bacteria, feeding them specific isotopes that could easily be tracked. Wittmann compares the process to viewing the flows of city traffic from the sky.

"We could see what they eat and how they use the nutrients to fuel the different parts of their metabolism in order to grow and produce extracellular products," he says.

The key molecule to initiate flavor development is acetate, says Wittmann, noting that "The intensity of the aroma from a fermented bean is amazing."

Production of acetate requires two major nutrients: lactate and ethanol. These are produced by lactic acid bacteria, and yeast, respectively, during the initial fermentation of cocoa pulp sugars, says Wittmann.

The acetic acid bacteria then process these simultaneously, via separate metabolic pathways, ultimately producing acetate from them.

"This discovery reveals a fine-tuned collaboration of a multi-species consortium during cocoa fermentation," says Wittman. And that may help improve selection of natural strains for better-balanced starter cultures.

###

The manuscript can be found online at http://bit.ly/asmtip0614b. The final version of the article is scheduled for the August 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!

Further reports about: Environmental Fermentation bacteria beans cocoa metabolic metabolism nutrients

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>