Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feral pigs exposed to nasty bacteria

11.04.2012
A North Carolina State University study shows that, for the first time since testing began several years ago, feral pigs in North Carolina have tested positive for Brucella suis, an important and harmful bacteria that can be transmitted to people.

The bacteria are transmitted to humans by unsafe butchering and consumption of undercooked meat. Clinical signs of brucellosis, the disease caused by the bacteria, in people are fairly non-specific and include persistent flu-like symptoms. The bacteria can also spread in pig populations, causing abortions in affected swine.

In a study conducted to test N.C. feral pig populations for several types of bacteria and viruses, about 9 percent of feral pigs studied in Johnston County and less than 1 percent of feral pigs surveyed randomly at 13 other sites across the state showed exposure to B. suis.

Dr. Chris DePerno, associate professor of forestry and environmental resources at NC State and the corresponding author of a paper describing the research, says the results are troubling for people who hunt feral pigs for sport or food.

“Now that exposure to Brucella suis has been found in North Carolina’s feral pig populations, people need to take care when hunting, butchering and cooking feral pigs,” DePerno says. “That means wearing gloves when field dressing feral pigs and cooking the meat to the proper temperature.”

Dr. Suzanne Kennedy-Stoskopf, an NC State research professor of wildlife infectious diseases and a co-author of the paper, says that testing positive for antibodies to B. suis means the feral pigs have been exposed to and mounted an immune response against the bacteria. Antibodies do not eliminate B. suis from pigs, so the animals are considered infected and capable of transmitting the bacteria to other pigs and people. She adds that control and eradication programs introduced in the late 1990s eliminated swine brucellosis from all commercial pig populations in the United States.

Kennedy-Stoskopf says that B.suis can be transmitted among pig populations when pigs ingest infected tissue or fluids. Direct contact with infected pigs or ingestion of contaminated food and water could cause currently uninfected pig populations to become infected.

“Spillover from infected feral pigs to commercial pigs is an economic and a public-health concern,” Kennedy-Stoskopf says. “The biggest public-health risk is to pork processors and hunters who field dress feral pigs. Although cases of brucellosis are rare in the United States, people need to understand the clinical signs – like intermittent fevers and persistent headaches – and go to the doctor for diagnosis and treatment if they have these flu-like symptoms.” Because clinical signs are so non-specific, it is important to tell your physician if you have had any exposure to feral swine carcasses and meat.

Feral pig populations are exploding across the country, DePerno says. Besides the rabbit-like reproductive proclivity of feral pigs, people are partially responsible for the population boom. There is strong evidence that humans have transported feral pigs into new areas for hunting.

“Control of feral pig populations is difficult at best,” DePerno says. “Research indicates that about 70 percent of the population will need to be removed each year to keep a wild population stable. Regarding feral pigs, hunting usually removes from 8 to 50 percent of a given wild population.”

Feral pigs can be destructive to the environment and can outcompete native animals. They dig, root and tear up crop lands; eat just about anything; and can spread disease to animals and people.

DePerno hopes that more research on how far feral pigs travel – and increased scrutiny of hunters who move feral pigs from place to place – will help keep feral populations from spreading.

NC State graduate student Mark Sandfoss and postdoctoral researcher Dr. Maria Palamar conducted research and co-authored the paper, which is published in the Journal of Wildlife Diseases. Researchers from the U.S. Department of Agriculture and Rollins Animal Disease Diagnostic Laboratory contributed to the research.

The study was funded by NC State’s Fisheries, Wildlife and Conservation Biology Program and the Department of Forestry and Environmental Resources; the Howell Woods Environmental Learning Center; and the U.S. Department of Agriculture/APHIS/Wildlife Services National Wildlife Disease Program.

- kulikowski -

Note: An abstract of the paper follows.

“A Serosurvey of Feral Swine (Sus scrofa) in Eastern N.C.”

Authors: Mark R. Sandfoss, Christopher DePerno, Maria B. Palamar, and Suzanne Kennedy-Stoskopf, North Carolina State University; Carl W. Betsill. USDA-APHIS-Wildlife Services; Gene Erickson, Rollins Animal Disease Diagnostic Laboratory

Published: April 2012 in Journal of Wildlife Diseases

Abstract: As feral swine (Sus scrofa) populations expand their range and the opportunity for feral swine hunting increases, there is increased potential for disease transmission that may impact humans, domestic swine, and wildlife. From September 2007 to March 2010, in 13 North Carolina counties and at Howell Woods Environmental Learning Center, we conducted a serosurvey of feral swine for Brucella suis, pseudorabies virus (PRV), and classical swine fever (CSF); also, the samples obtained at Howell Woods were tested for porcine circovirus type 2 (PCV-2). Feral swine serum was collected from trapped and hunter harvested swine. For the first time since 2004 when screening began, we detected B. suis antibodies in 9.2% (9/98) of feral swine at Howell Woods and

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>