Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Females shut down male-male sperm competition in leafcutter ants

Leafcutter ant queens can live for twenty years, fertilizing millions of eggs with sperm stored after a single day of sexual activity.

Danish researchers who have studied ants at the Smithsonian Tropical Research Institute in Panama since 1992 discovered that in both ant and bee species in which queens have multiple mates, a male's seminal fluid favors the survival of its own sperm over the other males' sperm. However, once sperm has been stored, leafcutter ant queens neutralize male-male sperm competition with glandular secretions in their sperm-storage organ.

"Two things appear to be going on here," explains Jacobus Boomsma, professor at the University of Copenhagen and Research Associate at STRI. "Right after mating there is competition between sperm from different males. Sperm is expendable. Later, sperm becomes very precious to the female who will continue to use it for many years to fertilize her own eggs, producing the millions of workers it takes to maintain her colony."

With post-doctoral researchers Susanne den Boer in Copenhagen and Boris Baer at the University of Western Australia, professor Boomsma studied sperm competition in sister species of ants and bees that mate singly—each queen with just one male—or multiply—with several males.

Their results, published this week in the prestigious journal, Science, show that the ability of a male's seminal fluid to harm the sperm of other males only occurs in species that mate multiply, and that their own seminal fluid does not protect sperm against these antagonistic effects.

"Females belonging to many species—from vertebrates to insects-- have multiple male partners. Seminal products evolve rapidly, probably in response to the intense male-male competition that continues even after courtship and mating have taken place," said William Eberhard, Smithsonian staff scientist. "This study continues the STRI tradition of looking at post-copulatory selection in a very biodiverse range of organisms, following in the footsteps of people like Bob Silberglied, who asked why butterflies and moths have two kinds of sperm in the 1970's."

Similar sperm competition systems appear to have evolved independently in ants and in bees. Researchers now aim to discover how genes that control sperm recognition in bees and ants may differ, thus continuing to elucidate the details of a process key to reproduction and evolution.

A grant from the Danish National Research Foundation and an Australian Research Council Fellowship supported this work. Permits for ant collection and export were issued by Panama's Autoridad Nacional de Ambiente (ANAM).

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama is a unit of the Smithsonian Institution. The institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of beauty and importance of tropical ecosystems.

Ref. Susanne P.A. den Boer, Boris Baer, Jacobus Boomsma. Seminal fluid mediates ejaculate competition in social insects. Science. 18 Mar. 2010.

Beth King | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>