Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why females live longer than males: is it due to the father's sperm?

02.12.2009
Researchers in Japan have found that female mice produced by using genetic material from two mothers but no father live significantly longer than mice with the normal mix of maternal and paternal genes. Their findings provide the first evidence that sperm genes may have a detrimental effect on lifespan in mammals.

The research, which is published online today (Wednesday 2 December) in Europe's leading reproductive medicine journal Human Reproduction [1], found that mice created from two female genomes (bi-maternal (BM) mice) lived an average of 186 days longer than control mice created from the normal combination of a male and female genome. The average lifespan for the type of mice used in the study is between about 600-700 days, meaning that the BM mice lived approximately a third longer than normal.

Professor Tomohiro Kono (PhD), from the Department of Bioscience, Tokyo University of Agriculture, and Director of the Nodai Research Institute (Tokyo, Japan), and Dr Manabu Kawahara (PhD), associate professor at the Laboratory of Animal Resource Development, Faculty of Agriculture, Saga University (Japan), carried out the research. They believe the reason for the difference in longevity could relate to a gene on chromosome 9 associated with post-natal growth.

Prof Kono said: "We have known for some time that women tend to live longer than men in almost all countries worldwide, and that these sex-related differences in longevity also occur in many other mammalian species. However, the reason for this difference was unclear and, in particular, it was not known whether longevity in mammals was controlled by the genome composition of only one or both parents."

To answer this question, Prof Kono and Dr Kawahara set out to study the life span of mice produced without sperm. To do this, they collected non-growing oocytes (eggs) from day-old mice, manipulated the genetic material in these eggs so that the genes behaved like sperm genes, and then transplanted this manipulated genetic material into the fully grown, unfertilised oocytes of adult mice that had their nuclei removed (enucleated oocytes). These reconstructed oocytes developed into embryos, which were transferred into surrogate mother mice. The mice that were born as a result were bi-maternal, having genetic material from two mothers, but no father.

The researchers created control mice through natural mating that were genetically identical to the BM mice, apart from the fact that they were created in the normal way with genes from male and female mice.

There were 13 BM mice and 13 control mice born between October 2005 and March 2006, and Prof Kono found that the average lifespan was 186 days longer in the BM mice than in the controls (841.5 days versus 655.5 days). The longest time that any of the control mice lived was 996 days, with all but one of them dying by 800 days, while the longest time alive for the BM mice was 1045 days, with all but three of them living for more than 800 days. The researchers checked the weight of the mice at 49 days and 600 days (around 20 months after birth) and found that the BM mice were significantly lighter and smaller than the control mice. The BM mice also seemed to have better immune systems, with a significant increase in one type of white blood cell, eosinophil.

Both sets of mice were kept in the same, infection-free environments, with free access to food, making it unlikely that some external environmental factor was the cause of the difference in life spans.

Prof Kono said: "We believe that the most likely reason for the differences in longevity relates to the repression of a gene called Rasgrf1 in the BM mice. This gene normally expresses from the paternally inherited chromosome and is an imprinted gene on chromosome 9 associated with post-natal growth. Thus far, it's not clear whether Rasgrf1 is definitively associated with mouse longevity, but it is one of the strong candidates for a responsible gene. Furthermore, we cannot eliminate the possibility that other, unknown genes that rely on their paternal inheritance to function normally may be responsible for the extended longevity of the BM mice."

Imprinted genes are genes that are turned on, or "expressed", according to whether they are inherited from the mother or the father.

The researchers write: "Our results are consistent with models based on sex-specific selection of reproductive strategies, e.g. male individuals maximizing fitness by an intense investment in reproduction by way of a larger body size in order to achieve more breeding opportunities, resulting in shorter longevity…. In contrast, female individuals usually do not engage in such costly male behaviours and instead tend to optimize their reproductive output by conserving energy for delivery, providing for offspring, foraging and predator avoidance. Our results further suggested sex differences in longevity originating at the genome level, implying that the sperm genome has a detrimental effect on longevity in mammals."

Prof Kono concluded: "The study may give an answer to the fundamental questions: that is, whether longevity in mammals is controlled by the genome composition of only one or both parents, and just maybe, why women are at an advantage over men with regard to the lifespan."

[1] Longevity in mice without a father. Human Reproduction journal. doi:10/1093/humrep/dep400

Emma Mason | EurekAlert!
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>