Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why female moths are big and beautiful

12.03.2010
In most animal species, males and females show obvious differences in body size. But how can this be, given that both sexes share the same genes governing their growth? University of Arizona entomologists studied this conundrum in moths and found clues that had been overlooked by previous efforts to explain this mystery of nature.

Take a look around in the animal world and you will find that, in most organisms, individuals of one sex are larger than the other of the species.

Even though evolutionary biologists have long recognized this discrepancy, called sexual dimorphism, they have struggled for decades to solve a major paradox: How can males and females of one species be of different sizes, given that they share the same genetic blueprints dictating their development and growth?

Researchers from the University of Arizona have discovered that the key to unraveling this mystery lies in the early developmental stages during which the sexes begin to grow apart and that females can respond to selection on size almost twice as fast as can males.

Their findings are published online before print in Proceedings of the Royal Society of London, Series B.

"In mammals, the males tend to be larger because there is an advantage in being bigger and stronger when it comes to fighting over who gets the female," explained Craig Stillwell, lead author of the study and a UA Center for Insect Science postdoctoral fellow in the lab of Goggy Davidowitz, an assistant professor of entomology at the UA.

"In most arthropods, on the other hand, we find the opposite: the females are bigger than the males. Think of spiders, for example. In some species, the female can be hundreds of times larger than the male.

"The question we asked was, 'how do females and males come to be different in size?'"

Many biologists have tried to solve this puzzle over time, but when Stillwell and Davidowitz looked at the literature, they realized something was missing in the picture.

"Since there is no difference – at least that we know of – between the male and female genes controlling growth, nobody could figure out why we see what we see in nature: differently sized males and females," said Stillwell.

Scientists have known that growth rates do not differ between female and male caterpillars and thus cannot account for the observed size difference. Rather, the sexual dimorphism observed in the adult animals more likely has to do with differences in the time the two sexes spent as growing larvae. Even in light of that, nearly all research has focused on the adult animals.

"We are the first ones to look at the larvae with this question in mind," Stillwell said.

Stillwell and Davidowitz chose the giant hawk moth (Manduca sexta), a species native to Arizona, as a model organism, mostly because this insect species is well-studied, easily bred in the lab and large enough to allow for ease of handling and measuring.

The researchers followed more than 1,200 caterpillars from the time they hatched, all the way through four molts and until they pupated. They weighed and measured the animals at different times during development and fed the data into a complex statistical model they developed.

For most of their lives as caterpillars, females and males do not appear much different.

"The final larval stage is when it all happens," Stillwell said. "There is a point in the caterpillar's life when an inner clock and environmental cues tell the animal it's time to become an adult. Hormonal changes make them stop feeding and wander around looking for a place to pupate. Within a few hours they develop into a pupa, from which the adult moth will emerge a few weeks later."

Stillwell and Davidowitz discovered that female caterpillars initiate this fundamental change a bit later than the males. By the time the female caterpillars pupate, they are larger, making for larger moths when they emerge.

So where is the advantage in being larger if you're a female insect?

"Biologists think selection favors large females because they can produce more offspring," Stillwell said.

"Another exciting result of this study is that we found a lot more variation in the physiological makeup of the female caterpillars compared to male individuals. Therefore, over generations, the females are able to respond to selective pressures nudging them toward large body size much faster than the males."

Reference: R. Craig Stillwell and Goggy Davidowitz, A developmental perspective on the evolution of sexual size dimorphism of a moth. Proceedings of the Royal Society of London, Series B, published online before print on March 10, 2010.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: female moths genetic blueprint sexual dimorphism

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>