Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why female moths are big and beautiful

12.03.2010
In most animal species, males and females show obvious differences in body size. But how can this be, given that both sexes share the same genes governing their growth? University of Arizona entomologists studied this conundrum in moths and found clues that had been overlooked by previous efforts to explain this mystery of nature.

Take a look around in the animal world and you will find that, in most organisms, individuals of one sex are larger than the other of the species.

Even though evolutionary biologists have long recognized this discrepancy, called sexual dimorphism, they have struggled for decades to solve a major paradox: How can males and females of one species be of different sizes, given that they share the same genetic blueprints dictating their development and growth?

Researchers from the University of Arizona have discovered that the key to unraveling this mystery lies in the early developmental stages during which the sexes begin to grow apart and that females can respond to selection on size almost twice as fast as can males.

Their findings are published online before print in Proceedings of the Royal Society of London, Series B.

"In mammals, the males tend to be larger because there is an advantage in being bigger and stronger when it comes to fighting over who gets the female," explained Craig Stillwell, lead author of the study and a UA Center for Insect Science postdoctoral fellow in the lab of Goggy Davidowitz, an assistant professor of entomology at the UA.

"In most arthropods, on the other hand, we find the opposite: the females are bigger than the males. Think of spiders, for example. In some species, the female can be hundreds of times larger than the male.

"The question we asked was, 'how do females and males come to be different in size?'"

Many biologists have tried to solve this puzzle over time, but when Stillwell and Davidowitz looked at the literature, they realized something was missing in the picture.

"Since there is no difference – at least that we know of – between the male and female genes controlling growth, nobody could figure out why we see what we see in nature: differently sized males and females," said Stillwell.

Scientists have known that growth rates do not differ between female and male caterpillars and thus cannot account for the observed size difference. Rather, the sexual dimorphism observed in the adult animals more likely has to do with differences in the time the two sexes spent as growing larvae. Even in light of that, nearly all research has focused on the adult animals.

"We are the first ones to look at the larvae with this question in mind," Stillwell said.

Stillwell and Davidowitz chose the giant hawk moth (Manduca sexta), a species native to Arizona, as a model organism, mostly because this insect species is well-studied, easily bred in the lab and large enough to allow for ease of handling and measuring.

The researchers followed more than 1,200 caterpillars from the time they hatched, all the way through four molts and until they pupated. They weighed and measured the animals at different times during development and fed the data into a complex statistical model they developed.

For most of their lives as caterpillars, females and males do not appear much different.

"The final larval stage is when it all happens," Stillwell said. "There is a point in the caterpillar's life when an inner clock and environmental cues tell the animal it's time to become an adult. Hormonal changes make them stop feeding and wander around looking for a place to pupate. Within a few hours they develop into a pupa, from which the adult moth will emerge a few weeks later."

Stillwell and Davidowitz discovered that female caterpillars initiate this fundamental change a bit later than the males. By the time the female caterpillars pupate, they are larger, making for larger moths when they emerge.

So where is the advantage in being larger if you're a female insect?

"Biologists think selection favors large females because they can produce more offspring," Stillwell said.

"Another exciting result of this study is that we found a lot more variation in the physiological makeup of the female caterpillars compared to male individuals. Therefore, over generations, the females are able to respond to selective pressures nudging them toward large body size much faster than the males."

Reference: R. Craig Stillwell and Goggy Davidowitz, A developmental perspective on the evolution of sexual size dimorphism of a moth. Proceedings of the Royal Society of London, Series B, published online before print on March 10, 2010.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: female moths genetic blueprint sexual dimorphism

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>