Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why female moths are big and beautiful

12.03.2010
In most animal species, males and females show obvious differences in body size. But how can this be, given that both sexes share the same genes governing their growth? University of Arizona entomologists studied this conundrum in moths and found clues that had been overlooked by previous efforts to explain this mystery of nature.

Take a look around in the animal world and you will find that, in most organisms, individuals of one sex are larger than the other of the species.

Even though evolutionary biologists have long recognized this discrepancy, called sexual dimorphism, they have struggled for decades to solve a major paradox: How can males and females of one species be of different sizes, given that they share the same genetic blueprints dictating their development and growth?

Researchers from the University of Arizona have discovered that the key to unraveling this mystery lies in the early developmental stages during which the sexes begin to grow apart and that females can respond to selection on size almost twice as fast as can males.

Their findings are published online before print in Proceedings of the Royal Society of London, Series B.

"In mammals, the males tend to be larger because there is an advantage in being bigger and stronger when it comes to fighting over who gets the female," explained Craig Stillwell, lead author of the study and a UA Center for Insect Science postdoctoral fellow in the lab of Goggy Davidowitz, an assistant professor of entomology at the UA.

"In most arthropods, on the other hand, we find the opposite: the females are bigger than the males. Think of spiders, for example. In some species, the female can be hundreds of times larger than the male.

"The question we asked was, 'how do females and males come to be different in size?'"

Many biologists have tried to solve this puzzle over time, but when Stillwell and Davidowitz looked at the literature, they realized something was missing in the picture.

"Since there is no difference – at least that we know of – between the male and female genes controlling growth, nobody could figure out why we see what we see in nature: differently sized males and females," said Stillwell.

Scientists have known that growth rates do not differ between female and male caterpillars and thus cannot account for the observed size difference. Rather, the sexual dimorphism observed in the adult animals more likely has to do with differences in the time the two sexes spent as growing larvae. Even in light of that, nearly all research has focused on the adult animals.

"We are the first ones to look at the larvae with this question in mind," Stillwell said.

Stillwell and Davidowitz chose the giant hawk moth (Manduca sexta), a species native to Arizona, as a model organism, mostly because this insect species is well-studied, easily bred in the lab and large enough to allow for ease of handling and measuring.

The researchers followed more than 1,200 caterpillars from the time they hatched, all the way through four molts and until they pupated. They weighed and measured the animals at different times during development and fed the data into a complex statistical model they developed.

For most of their lives as caterpillars, females and males do not appear much different.

"The final larval stage is when it all happens," Stillwell said. "There is a point in the caterpillar's life when an inner clock and environmental cues tell the animal it's time to become an adult. Hormonal changes make them stop feeding and wander around looking for a place to pupate. Within a few hours they develop into a pupa, from which the adult moth will emerge a few weeks later."

Stillwell and Davidowitz discovered that female caterpillars initiate this fundamental change a bit later than the males. By the time the female caterpillars pupate, they are larger, making for larger moths when they emerge.

So where is the advantage in being larger if you're a female insect?

"Biologists think selection favors large females because they can produce more offspring," Stillwell said.

"Another exciting result of this study is that we found a lot more variation in the physiological makeup of the female caterpillars compared to male individuals. Therefore, over generations, the females are able to respond to selective pressures nudging them toward large body size much faster than the males."

Reference: R. Craig Stillwell and Goggy Davidowitz, A developmental perspective on the evolution of sexual size dimorphism of a moth. Proceedings of the Royal Society of London, Series B, published online before print on March 10, 2010.

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

Further reports about: female moths genetic blueprint sexual dimorphism

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>