Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female mate choice enhances offspring fitness in an annual herb

28.06.2011
Delayed pistil receptivity may facilitate pollen competition in Collinsia

In many organisms females directly or indirectly select mates (or sperm) and potentially influence the fitness of their offspring. Mate choice and sexual selection in plants is more complex in some ways than in animals because plants are sessile organisms and often have to rely on external vectors, such as animals, for pollen transport. As such, there is only so much a plant can do to affect the timing of pollen arrival, or the size and diversity of deposited pollen. But can a plant control which pollen grains, of the hundreds that land on their stigmas, make it to the ovules?

Åsa Lankinen from the Swedish University of Agricultural Sciences, whose research focuses on mate choice and sexual selection in plants, teamed up with Josefin Madjidian from Lund University, Sweden, to see if they could determine whether a mechanism that plants may use to exert female choice was delayed stigma receptivity in the pistil (the female part of the flower). Delaying receptivity to pollen grains may affect aspects of pollen competition such as siring ability, paternal diversity, and offspring fitness. Their study can be found online in the July issue of the American Journal of Botany (http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html).

"Our study contributes to our general understanding of how and why plants choose their mates when pollen arrive repeatedly to the stigma over a period of time," said Lankinen.

Lankinen and Madjidian hand-pollinated flowers of an annual herb, Collinsia heterophylla (Plataginaceae), in a controlled greenhouse setting in a series of crosses that simulated delayed stigma receptivity.

The authors found that when stigmas were receptive, pollination arrival sequence was important: pollen from the donor that was applied first sired more offspring (up to 74%) than the second donor, even when there was only a few minutes of time lag between their depositions. This was also the case for pollinations that were done with a 24-hour lag between them. However, even in the latter scenario, a surprising proportion of the seeds were still sired by the second donor.

Interestingly, when a mixture of the two donors was applied once, all at the same time, simulating delayed stigma receptivity (because all the pollen start to grow toward the ovules at the same time), there was greater offspring diversity compared to two separate pollination events, one from each donor. In other words, the proportion of offspring sired by each donor was more even in the single pollination event of mixed pollen, rather than being dominated by a single donor.

Moreover, high paternal diversity was also associated with increased seed production, indicating a fitness advantage to delaying stigma receptivity.

"Our results indicate that in our study species the ability to enhance pollen competition between competing mates by delaying stigma receptivity is beneficial because it increases paternal diversity of the brood, which in turn is positively connected to number of seeds produced," Lankinen said. "Even though many studies have shown that enhanced pollen competition can be beneficial for the female reproductive function, the underlying reason for this association is not clear."

Given the benefit of delaying stigma receptivity, Lankinen notes that she and her colleagues "are puzzled by the fact that variation in timing of stigma receptivity is very large in wild populations," and concludes that it would be of interest to understand more about this trait under natural conditions.

Of additional interest is the potential occurrence of a sexual conflict over timing of stigma receptivity. "We have detected that some pollen donors can fertilize ovules ahead of others, presumably securing paternity by avoiding competition with later arriving pollen," Lankinen added. "Such early fertilization seems to be disadvantageous for the female function in terms of reduced seed set. Because our current study showed a benefit of delaying stigma receptivity, this further points to the presence of a sexual conflict."

Åsa Lankinen and Josefin A. Madjidian. (2011). Enhancing pollen competition by delaying stigma receptivity: Pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). American Journal of Botany 98(7): 1191-1200. DOI: 10.3732/ajb.1000510

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>