Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female mate choice enhances offspring fitness in an annual herb

28.06.2011
Delayed pistil receptivity may facilitate pollen competition in Collinsia

In many organisms females directly or indirectly select mates (or sperm) and potentially influence the fitness of their offspring. Mate choice and sexual selection in plants is more complex in some ways than in animals because plants are sessile organisms and often have to rely on external vectors, such as animals, for pollen transport. As such, there is only so much a plant can do to affect the timing of pollen arrival, or the size and diversity of deposited pollen. But can a plant control which pollen grains, of the hundreds that land on their stigmas, make it to the ovules?

Åsa Lankinen from the Swedish University of Agricultural Sciences, whose research focuses on mate choice and sexual selection in plants, teamed up with Josefin Madjidian from Lund University, Sweden, to see if they could determine whether a mechanism that plants may use to exert female choice was delayed stigma receptivity in the pistil (the female part of the flower). Delaying receptivity to pollen grains may affect aspects of pollen competition such as siring ability, paternal diversity, and offspring fitness. Their study can be found online in the July issue of the American Journal of Botany (http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html).

"Our study contributes to our general understanding of how and why plants choose their mates when pollen arrive repeatedly to the stigma over a period of time," said Lankinen.

Lankinen and Madjidian hand-pollinated flowers of an annual herb, Collinsia heterophylla (Plataginaceae), in a controlled greenhouse setting in a series of crosses that simulated delayed stigma receptivity.

The authors found that when stigmas were receptive, pollination arrival sequence was important: pollen from the donor that was applied first sired more offspring (up to 74%) than the second donor, even when there was only a few minutes of time lag between their depositions. This was also the case for pollinations that were done with a 24-hour lag between them. However, even in the latter scenario, a surprising proportion of the seeds were still sired by the second donor.

Interestingly, when a mixture of the two donors was applied once, all at the same time, simulating delayed stigma receptivity (because all the pollen start to grow toward the ovules at the same time), there was greater offspring diversity compared to two separate pollination events, one from each donor. In other words, the proportion of offspring sired by each donor was more even in the single pollination event of mixed pollen, rather than being dominated by a single donor.

Moreover, high paternal diversity was also associated with increased seed production, indicating a fitness advantage to delaying stigma receptivity.

"Our results indicate that in our study species the ability to enhance pollen competition between competing mates by delaying stigma receptivity is beneficial because it increases paternal diversity of the brood, which in turn is positively connected to number of seeds produced," Lankinen said. "Even though many studies have shown that enhanced pollen competition can be beneficial for the female reproductive function, the underlying reason for this association is not clear."

Given the benefit of delaying stigma receptivity, Lankinen notes that she and her colleagues "are puzzled by the fact that variation in timing of stigma receptivity is very large in wild populations," and concludes that it would be of interest to understand more about this trait under natural conditions.

Of additional interest is the potential occurrence of a sexual conflict over timing of stigma receptivity. "We have detected that some pollen donors can fertilize ovules ahead of others, presumably securing paternity by avoiding competition with later arriving pollen," Lankinen added. "Such early fertilization seems to be disadvantageous for the female function in terms of reduced seed set. Because our current study showed a benefit of delaying stigma receptivity, this further points to the presence of a sexual conflict."

Åsa Lankinen and Josefin A. Madjidian. (2011). Enhancing pollen competition by delaying stigma receptivity: Pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). American Journal of Botany 98(7): 1191-1200. DOI: 10.3732/ajb.1000510

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>