Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female mate choice enhances offspring fitness in an annual herb

28.06.2011
Delayed pistil receptivity may facilitate pollen competition in Collinsia

In many organisms females directly or indirectly select mates (or sperm) and potentially influence the fitness of their offspring. Mate choice and sexual selection in plants is more complex in some ways than in animals because plants are sessile organisms and often have to rely on external vectors, such as animals, for pollen transport. As such, there is only so much a plant can do to affect the timing of pollen arrival, or the size and diversity of deposited pollen. But can a plant control which pollen grains, of the hundreds that land on their stigmas, make it to the ovules?

Åsa Lankinen from the Swedish University of Agricultural Sciences, whose research focuses on mate choice and sexual selection in plants, teamed up with Josefin Madjidian from Lund University, Sweden, to see if they could determine whether a mechanism that plants may use to exert female choice was delayed stigma receptivity in the pistil (the female part of the flower). Delaying receptivity to pollen grains may affect aspects of pollen competition such as siring ability, paternal diversity, and offspring fitness. Their study can be found online in the July issue of the American Journal of Botany (http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html).

"Our study contributes to our general understanding of how and why plants choose their mates when pollen arrive repeatedly to the stigma over a period of time," said Lankinen.

Lankinen and Madjidian hand-pollinated flowers of an annual herb, Collinsia heterophylla (Plataginaceae), in a controlled greenhouse setting in a series of crosses that simulated delayed stigma receptivity.

The authors found that when stigmas were receptive, pollination arrival sequence was important: pollen from the donor that was applied first sired more offspring (up to 74%) than the second donor, even when there was only a few minutes of time lag between their depositions. This was also the case for pollinations that were done with a 24-hour lag between them. However, even in the latter scenario, a surprising proportion of the seeds were still sired by the second donor.

Interestingly, when a mixture of the two donors was applied once, all at the same time, simulating delayed stigma receptivity (because all the pollen start to grow toward the ovules at the same time), there was greater offspring diversity compared to two separate pollination events, one from each donor. In other words, the proportion of offspring sired by each donor was more even in the single pollination event of mixed pollen, rather than being dominated by a single donor.

Moreover, high paternal diversity was also associated with increased seed production, indicating a fitness advantage to delaying stigma receptivity.

"Our results indicate that in our study species the ability to enhance pollen competition between competing mates by delaying stigma receptivity is beneficial because it increases paternal diversity of the brood, which in turn is positively connected to number of seeds produced," Lankinen said. "Even though many studies have shown that enhanced pollen competition can be beneficial for the female reproductive function, the underlying reason for this association is not clear."

Given the benefit of delaying stigma receptivity, Lankinen notes that she and her colleagues "are puzzled by the fact that variation in timing of stigma receptivity is very large in wild populations," and concludes that it would be of interest to understand more about this trait under natural conditions.

Of additional interest is the potential occurrence of a sexual conflict over timing of stigma receptivity. "We have detected that some pollen donors can fertilize ovules ahead of others, presumably securing paternity by avoiding competition with later arriving pollen," Lankinen added. "Such early fertilization seems to be disadvantageous for the female function in terms of reduced seed set. Because our current study showed a benefit of delaying stigma receptivity, this further points to the presence of a sexual conflict."

Åsa Lankinen and Josefin A. Madjidian. (2011). Enhancing pollen competition by delaying stigma receptivity: Pollen deposition schedules affect siring ability, paternal diversity, and seed production in Collinsia heterophylla (Plantaginaceae). American Journal of Botany 98(7): 1191-1200. DOI: 10.3732/ajb.1000510

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/early/2011/06/15/ajb.1000510.full.pdf+html. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>