Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feedback loop explains inflammatory effect on intestinal lining

19.03.2010
Signals released by immune cells during a bout of inflammatory bowel disease interfere with intestinal cells' ability to regenerate. Yet people with inflammatory bowel diseases have a significantly higher risk of developing colon cancer: a hyper-activation of growth in those same intestinal cells.

Researchers at Emory University School of Medicine have identified a feedback loop involving a growth-regulating circuit in intestinal cells, which helps explain these apparently contradictory observations. The findings also suggest that interfering with one component of the feedback loop—a protein called "dickkopf 1" —may aid in controlling inflammatory bowel diseases.

The results are published online and scheduled for publication in the March 26, 2010 issue of the journal Immunity.

Senior author of the paper was Asma Nusrat, MD, Emory professor of pathology and laboratory medicine. The research was conducted by postdoctoral fellows Porfirio Nava, Stefan Koch and Mike Laukoetter. Laukoetter is now at the University of Münster in Germany.

The cells lining the intestine, or intestinal epithelial cells, are normally able to repair breaks in the lining by dividing and migrating until the wound has been healed, Nusrat explains. In inflammatory bowel diseases such as Crohn's or ulcerative colitis, immune cells release signals that prevent this repair and cause epithelial cells to die.

Nusrat and her colleagues examined mice treated with a chemical, dextran sulfate, which gives them colitis. The most prominent signaling molecules given off by immune cells in inflamed intestinal tissue were the cytokines ("cell movers") interferon-gamma and tumor necrosis factor-alpha. When the researchers treated intestinal cells by themselves in dishes with these cytokines, the cells had a burst of growth but then started to die out after three days.

"We were puzzled when we saw that cytokines induced activation of a pathway that should lead to cell division and cell survival, not cell death. It was not immediately clear to us why the epithelial cells were dying after exposure to cytokines despite stimulation of this survival pathway," Nusrat says.

A set of proteins together making up a regulatory circuit, collectively known as the Wnt pathway, controls the growth of intestinal epithelial cells. Most colon cancer cells have mutations in their DNA that push this circuit into overdrive. However, the circuit has to work at a moderate level or intestinal cells will not grow.

Nusrat's team found that prolonged exposure to the cytokines induces intestinal cells to give off a protein called dickkopf, which quenches the Wnt pathway and eventually kills the cells.

In mice with a bout of colitis, activity by the intestinal epithelial cells comes in two phases: mild growth for a few days, followed by cells dying out and then growth in areas next to ulcers in the intestinal lining, the authors found.

"Some areas of the intestinal epithelium are able to overcome inhibition of the Wnt pathway, perhaps by inactivating dickkopf," Nusrat says. "Our studies suggest that hyper-stimulation by inflammatory cytokines may be one of the mechanisms making patients with inflammatory bowel diseases significantly more susceptible to cancer development."

The authors speculate that the experimental chemotherapy drug triciribine, which could prevent cells from making dickkopf, could be useful in controlling specific stages of active inflammation in colitis. Another potential tool for controlling inflammation can be antibodies to dickkopf, they say.

The research was supported by the National Institutes of Health, the Crohn's and Colitis Foundation of America and the German Research Foundation.

Reference: P. Nava et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity (2010)

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>