Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feedback loop explains inflammatory effect on intestinal lining

19.03.2010
Signals released by immune cells during a bout of inflammatory bowel disease interfere with intestinal cells' ability to regenerate. Yet people with inflammatory bowel diseases have a significantly higher risk of developing colon cancer: a hyper-activation of growth in those same intestinal cells.

Researchers at Emory University School of Medicine have identified a feedback loop involving a growth-regulating circuit in intestinal cells, which helps explain these apparently contradictory observations. The findings also suggest that interfering with one component of the feedback loop—a protein called "dickkopf 1" —may aid in controlling inflammatory bowel diseases.

The results are published online and scheduled for publication in the March 26, 2010 issue of the journal Immunity.

Senior author of the paper was Asma Nusrat, MD, Emory professor of pathology and laboratory medicine. The research was conducted by postdoctoral fellows Porfirio Nava, Stefan Koch and Mike Laukoetter. Laukoetter is now at the University of Münster in Germany.

The cells lining the intestine, or intestinal epithelial cells, are normally able to repair breaks in the lining by dividing and migrating until the wound has been healed, Nusrat explains. In inflammatory bowel diseases such as Crohn's or ulcerative colitis, immune cells release signals that prevent this repair and cause epithelial cells to die.

Nusrat and her colleagues examined mice treated with a chemical, dextran sulfate, which gives them colitis. The most prominent signaling molecules given off by immune cells in inflamed intestinal tissue were the cytokines ("cell movers") interferon-gamma and tumor necrosis factor-alpha. When the researchers treated intestinal cells by themselves in dishes with these cytokines, the cells had a burst of growth but then started to die out after three days.

"We were puzzled when we saw that cytokines induced activation of a pathway that should lead to cell division and cell survival, not cell death. It was not immediately clear to us why the epithelial cells were dying after exposure to cytokines despite stimulation of this survival pathway," Nusrat says.

A set of proteins together making up a regulatory circuit, collectively known as the Wnt pathway, controls the growth of intestinal epithelial cells. Most colon cancer cells have mutations in their DNA that push this circuit into overdrive. However, the circuit has to work at a moderate level or intestinal cells will not grow.

Nusrat's team found that prolonged exposure to the cytokines induces intestinal cells to give off a protein called dickkopf, which quenches the Wnt pathway and eventually kills the cells.

In mice with a bout of colitis, activity by the intestinal epithelial cells comes in two phases: mild growth for a few days, followed by cells dying out and then growth in areas next to ulcers in the intestinal lining, the authors found.

"Some areas of the intestinal epithelium are able to overcome inhibition of the Wnt pathway, perhaps by inactivating dickkopf," Nusrat says. "Our studies suggest that hyper-stimulation by inflammatory cytokines may be one of the mechanisms making patients with inflammatory bowel diseases significantly more susceptible to cancer development."

The authors speculate that the experimental chemotherapy drug triciribine, which could prevent cells from making dickkopf, could be useful in controlling specific stages of active inflammation in colitis. Another potential tool for controlling inflammation can be antibodies to dickkopf, they say.

The research was supported by the National Institutes of Health, the Crohn's and Colitis Foundation of America and the German Research Foundation.

Reference: P. Nava et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity (2010)

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>