Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feedback loop explains inflammatory effect on intestinal lining

19.03.2010
Signals released by immune cells during a bout of inflammatory bowel disease interfere with intestinal cells' ability to regenerate. Yet people with inflammatory bowel diseases have a significantly higher risk of developing colon cancer: a hyper-activation of growth in those same intestinal cells.

Researchers at Emory University School of Medicine have identified a feedback loop involving a growth-regulating circuit in intestinal cells, which helps explain these apparently contradictory observations. The findings also suggest that interfering with one component of the feedback loop—a protein called "dickkopf 1" —may aid in controlling inflammatory bowel diseases.

The results are published online and scheduled for publication in the March 26, 2010 issue of the journal Immunity.

Senior author of the paper was Asma Nusrat, MD, Emory professor of pathology and laboratory medicine. The research was conducted by postdoctoral fellows Porfirio Nava, Stefan Koch and Mike Laukoetter. Laukoetter is now at the University of Münster in Germany.

The cells lining the intestine, or intestinal epithelial cells, are normally able to repair breaks in the lining by dividing and migrating until the wound has been healed, Nusrat explains. In inflammatory bowel diseases such as Crohn's or ulcerative colitis, immune cells release signals that prevent this repair and cause epithelial cells to die.

Nusrat and her colleagues examined mice treated with a chemical, dextran sulfate, which gives them colitis. The most prominent signaling molecules given off by immune cells in inflamed intestinal tissue were the cytokines ("cell movers") interferon-gamma and tumor necrosis factor-alpha. When the researchers treated intestinal cells by themselves in dishes with these cytokines, the cells had a burst of growth but then started to die out after three days.

"We were puzzled when we saw that cytokines induced activation of a pathway that should lead to cell division and cell survival, not cell death. It was not immediately clear to us why the epithelial cells were dying after exposure to cytokines despite stimulation of this survival pathway," Nusrat says.

A set of proteins together making up a regulatory circuit, collectively known as the Wnt pathway, controls the growth of intestinal epithelial cells. Most colon cancer cells have mutations in their DNA that push this circuit into overdrive. However, the circuit has to work at a moderate level or intestinal cells will not grow.

Nusrat's team found that prolonged exposure to the cytokines induces intestinal cells to give off a protein called dickkopf, which quenches the Wnt pathway and eventually kills the cells.

In mice with a bout of colitis, activity by the intestinal epithelial cells comes in two phases: mild growth for a few days, followed by cells dying out and then growth in areas next to ulcers in the intestinal lining, the authors found.

"Some areas of the intestinal epithelium are able to overcome inhibition of the Wnt pathway, perhaps by inactivating dickkopf," Nusrat says. "Our studies suggest that hyper-stimulation by inflammatory cytokines may be one of the mechanisms making patients with inflammatory bowel diseases significantly more susceptible to cancer development."

The authors speculate that the experimental chemotherapy drug triciribine, which could prevent cells from making dickkopf, could be useful in controlling specific stages of active inflammation in colitis. Another potential tool for controlling inflammation can be antibodies to dickkopf, they say.

The research was supported by the National Institutes of Health, the Crohn's and Colitis Foundation of America and the German Research Foundation.

Reference: P. Nava et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity (2010)

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>