Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To feed the future, we must mine the wealth of the world's seed banks today

08.07.2013
With fewer than a dozen flowering plants out of 300,000 species accounting for 80 percent of humanity's caloric intake, people need to tap unused plants to feed the world in the near future, claims Cornell University plant geneticist Susan McCouch in the Comment feature of the July 4 issue of Nature.

To keep pace with population growth and rising incomes around the world, researchers estimate that food availability must double in the next 25 years. The biodiversity stored in plant gene banks coupled with advances in genetics and plant breeding may hold the keys for meeting the demands of more food in the face of climate change, soil degradation and water and land shortages, according to the paper.

"Gene banks hold hundreds of thousands of seeds and tissue culture materials collected from farmer's fields and from wild, ancestral populations, providing the raw material that plant breeders need to create crops of the future," said McCouch.

For example, after screening more than 6,000 varieties from seed banks, plant breeders identified and crossbred a single wild species of rice, Oryza nivara; the result is a variety that has protected against grassy stunt virus disease in almost all tropical rice varieties in Asia for the past 36 years, the paper states. Similarly, by 1997, the value of using crop wild relatives as sources of environmental resilience and resistance to pests and diseases led to an estimated $115 billion in annual benefits to the world economy.

Though seeds are readily accessible in 1,700 gene banks throughout the world, "they are not used to their full potential in plant breeding," McCouch said.

At present, it is difficult for breeders to make use of the wealth of genetic material in seed banks because of a lack of information about the genes in most plants and the traits they confer, she said. Due to the time and effort required to identify and then use wild and unadapted genetic resources, "a breeder must have a good idea about the genetic value of an uncharacterized resource before attempting to use it in a breeding program," McCouch said.

In the paper, McCouch and colleagues outlined a three-point plan to address these constraints:

•A massive genetic sequencing effort on seed-bank holdings to document what exists in the collections, to strategically target experiments to evaluate what traits a plant has (called phenotyping) and to begin to predict plant performance.
•A broad phenotyping initiative, not only of the gene bank holdings, but also of the progeny generated from crossing wild and exotic materials to adapted varieties targeted for local use.

•An internationally accessible informatics infrastructure to coordinate data that are currently managed independently by gene-bank curators, agronomists and breeders.

The estimated cost for such a systematic, collaborative global effort to help characterize the genetic resources needed to feed the future is about $200 million annually, according to McCouch.

"This seems like great value, given that as a society we spend about $1 billion each year to run CERN's Large Hadron Collider near Geneva, Switzerland, and up to $180 million on a single fighter jet," said McCouch.

John Carberry | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>