Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty signaling in brain increases craving for sugar and drugs

31.08.2011
"Our data indicate that the brain becomes hypersensitive to rewards when this co-signaling of glutamate and dopamine does not function. Lower doses than normal are enough to increase the propensity to ingest the substance, and this is true of both sugar and cocaine," says Åsa Mackenzie, associate professor of neuroscience at Uppsala University and the researcher who led the study.

Addiction disorders are a major social problem, and we lack sufficient knowledge of how they arise and how various substances impact the brain. The brain's reward system gives us feelings of pleasure and happiness, for example when we have eaten or drunk something good, had sex, or worked out.

This pleasure arises when certain signal substances, primarily dopamine, are released in the brain. But this reward system can be "kidnapped" by other rewarding substances, such as alcohol and abuser drugs like cocaine. They provide feelings of reward initially, but they are so strong that nerve cells in the system are rewired, and addiction occurs. More natural substance, such as food rich in sugar, can also produce addiction-like conditions.

The Uppsala researchers and their colleagues have recently shown that dopamine cells in the reward system can send signals in cooperation with glutamate, so called co-signaling. Its physiological role was not previously known, however. For instance, how important is it for the inclination to ingest reward substances?

In studies of mice that lack the ability to send the above signals because their glutamate transporter, so-called VGLUT, has been inactivated, the scientists studied how prone the mice were to ingest sugar and cocaine. The results showed that they both ingested more and responded to lower dosages than control mice.

Since there is a strong correlation between memory and consumption substances, and ultimately also for the risk of addiction, the researchers also looked into this. They are able to present the interesting finding from the study that mice that lack the ability to co-signal developed dramatically improved memory of environments that could be associated with the ingestion of drugs. They also found changes in genetic expressions in the reward system that indicate that the brain has become hypersensitive and that dopamine levels have dropped.

"This is extremely interesting, but more research is needed in order to understand how this can be used in drug development, for instance," says Åsa Mackenzie.

These scientists have now gone on to study these mechanisms in connection with abuse in humans and are looking for direct connections between low VGLUT levels and addiction.

Reference: Enhanced sucrose and cocaine self-administration and cue-induced drug seeking after loss of VGLUT2 in midbrain dopamine neurons in mice. Abbreviated title: A role in reward for VGLUT2 in dopamine neurons. Johan Alsiö, Karin Nordenankar, Emma Arvidsson, Carolina Birgner, Souha Mahmoudi, Briac Halbout, Casey Smith, Guillaume M. Fortin, Lars Olson, Laurent Descarries, Louis Éric Trudeau, Klas Kullander, Daniel Lévesque, Åsa Wallén-Mackenzie. J. Neuroscience

Åsa Mackenzie | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>