Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Faulty signaling in brain increases craving for sugar and drugs

"Our data indicate that the brain becomes hypersensitive to rewards when this co-signaling of glutamate and dopamine does not function. Lower doses than normal are enough to increase the propensity to ingest the substance, and this is true of both sugar and cocaine," says Åsa Mackenzie, associate professor of neuroscience at Uppsala University and the researcher who led the study.

Addiction disorders are a major social problem, and we lack sufficient knowledge of how they arise and how various substances impact the brain. The brain's reward system gives us feelings of pleasure and happiness, for example when we have eaten or drunk something good, had sex, or worked out.

This pleasure arises when certain signal substances, primarily dopamine, are released in the brain. But this reward system can be "kidnapped" by other rewarding substances, such as alcohol and abuser drugs like cocaine. They provide feelings of reward initially, but they are so strong that nerve cells in the system are rewired, and addiction occurs. More natural substance, such as food rich in sugar, can also produce addiction-like conditions.

The Uppsala researchers and their colleagues have recently shown that dopamine cells in the reward system can send signals in cooperation with glutamate, so called co-signaling. Its physiological role was not previously known, however. For instance, how important is it for the inclination to ingest reward substances?

In studies of mice that lack the ability to send the above signals because their glutamate transporter, so-called VGLUT, has been inactivated, the scientists studied how prone the mice were to ingest sugar and cocaine. The results showed that they both ingested more and responded to lower dosages than control mice.

Since there is a strong correlation between memory and consumption substances, and ultimately also for the risk of addiction, the researchers also looked into this. They are able to present the interesting finding from the study that mice that lack the ability to co-signal developed dramatically improved memory of environments that could be associated with the ingestion of drugs. They also found changes in genetic expressions in the reward system that indicate that the brain has become hypersensitive and that dopamine levels have dropped.

"This is extremely interesting, but more research is needed in order to understand how this can be used in drug development, for instance," says Åsa Mackenzie.

These scientists have now gone on to study these mechanisms in connection with abuse in humans and are looking for direct connections between low VGLUT levels and addiction.

Reference: Enhanced sucrose and cocaine self-administration and cue-induced drug seeking after loss of VGLUT2 in midbrain dopamine neurons in mice. Abbreviated title: A role in reward for VGLUT2 in dopamine neurons. Johan Alsiö, Karin Nordenankar, Emma Arvidsson, Carolina Birgner, Souha Mahmoudi, Briac Halbout, Casey Smith, Guillaume M. Fortin, Lars Olson, Laurent Descarries, Louis Éric Trudeau, Klas Kullander, Daniel Lévesque, Åsa Wallén-Mackenzie. J. Neuroscience

Åsa Mackenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>