Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty proteins may prove significant in identifying new treatments for ovarian cancer

16.01.2012
OHSU Knight Cancer Institute study results suggest that more patients than initially thought could potentially be treated with a new class of drugs, PARP inhibitors

A constellation of defective proteins suspected in causing a malfunction in the body’s ability to repair its own DNA could be the link scientists need to prove a new class of drugs will be effective in treating a broad range of ovarian cancer patients, an Oregon Health & Science University Knight Cancer Institute study found.

These research results, published this week in PLoS ONE, have prompted additional exploration into whether the patient population included in clinical trials for drugs that target the enzyme poly ADP ribose polymerase (PARP) should be expanded. Several forms of cancer are more dependent on PARP for their growth than regular cells, which means that targeting these enzymes when they go haywire is a potentially effective way to treat ovarian cancer. Currently PARP inhibitors are being tested with patients who have two types of malfunctioning proteins, BRCA1 or BRCA2. But, the OHSU Knight Cancer Institute study of additional proteins, beyond BRCA proteins, suggests that they too are playing a role in driving ovarian cancer.

Tapping into the potential of PARP inhibitors could change the dynamics of ovarian cancer treatment. There has not been a substantial increase in treatment options for ovarian cancer in the past two decades, said Tanja Pejovic, M.D., Ph.D., gynecologic oncologist at the OHSU Knight Cancer Institute. Pejovic, who led the study of these additional defective proteins, added that the results provide evidence that further research into the role of multiple proteins is warranted.

Only about 10 to 15 percent of women with ovarian cancer have BRCA 1 or BRCA 2 mutations. Pejovic’s study of 186 patients with nonhereditary cancer found that 41 percent who had an early recurrence of the disease also had abnormal levels of the other proteins tracked. In contrast, only 19.5 percent of patients who hadn’t yet had a recurrence of the disease in three years had abnormal levels of these proteins.

“If we are able to identify the proteins that differentiate these patients at risk for early recurrence, this would open up a new direction in ovarian cancer treatment,” Pejovic said.

The study — which was supported by the Sherie Hildreth Ovarian Cancer (SHOC) Foundation — focused on proteins that are supposed to assist cells in repairing harmful breaks in DNA strands, a process called homologous recombination (HR). The malfunctioning of HR is not well understood in ovarian cancers where there is no family history of the disease. However, there is evidence that these proteins influence a patient’s ability to respond to drugs and their survival rates after treatment.

Ovarian cancer is the second most common gynecologic cancer and the most common cause of death among women with a gynecologic cancer. About 21,000 ovarian cancer cases are diagnosed annually and about 14,000 deaths occur each year from the disease.

The OHSU Knight Cancer Institute, which helped pioneer the field of personalized cancer medicine, is committed to research that identifies the specific mutations driving each individual patient’s cancer. Other researchers at the Knight Cancer Institute who contributed to the study are: Weiya Z. Wysham, M.D.; Hong Li, M.S., M.D.; Laura Hays, Ph.D.; Jay Wright; Nupur Pande, Ph.D.; and Maureen Hoatlin, Ph.D.

About the OHSU Knight Cancer Institute

With the latest treatments, technologies, hundreds of research studies and approximately 400 clinical trials, the OHSU Knight Cancer Institute is the only National Cancer Institute-designated Cancer Center between Sacramento and Seattle — an honor earned only by the nation's top cancer centers. The honor is shared among the more than 650 doctors, nurses, scientists and staff who work together at the OHSU Knight Cancer Institute to reduce the impact of cancer. For more information visit www.ohsuhealth.com/cancer or www.facebook.com/OHSUKnight.

About OHSU
Oregon Health & Science University is the state’s only health and research university and its only academic health center. As Portland's largest employer, OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state.
About SHOC
The Sherie Hildreth Ovarian Cancer (SHOC) Foundation is a multifaceted fundraising organization. In addition to raising funds for ovarian cancer research at Oregon Health & Science University, the SHOC Foundation works to raise awareness of ovarian cancer, educate women about the disease, and help empower women experiencing the disease. The SHOC foundation was established in 2005 by Sherie Hildreth and Cathy Ekerson in Gladstone, Ore.

Elisa Williams | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: BRCA Cancer DNA DNA strand Gates Foundation OHSU Oregon SHOC defective protein health services ovarian ovarian cancer

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>