Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty gene stops cell 'antennae' from transmitting

31.05.2010
An international group of researchers has identified the genetic cause of an inherited condition that causes severe fetal abnormalities.

The work, co-led by geneticists at the UCSD Institute for Genomic Medicine, together with colleagues from institutes and universities in Paris, Rome and England, should allow couples at risk of conceiving babies with the profoundly disabling Meckel-Gruber and Joubert syndromes to be identified beforehand through genetic screening.

The researchers' findings – which show how the disease gene stops cells' finger-like antennae or 'cilia' from detecting and relaying information – may ultimately lead to treatments for more common related disorders, such as spina bifida, retinal blindness and polycystic kidney disease. The paper will be published May 30 issue in Nature Genetics.

"By understanding the science behind this relatively rare condition, we can gain insight into other pediatric diseases that are far more frequent," said UCSD researcher Joseph Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego School of Medicine and Howard Hughes Medical Institute Investigator, who directed the research. "Spina bifida, for example, is one of the most common birth defects, affecting one in every 1000 newborns."

Meckel-Gruber syndrome and Joubert syndrome are part of a wider family of disorders known as 'ciliopathies' – so-called because the cilia are not working as they should and do not respond properly to signals.

This lack of communication can prevent growing embryos from developing a correct neural tube, which leads to abnormalities of the brain. Affected embryos can also develop abnormalities in the eyes, extra fingers or toes, and multiple cysts in their kidneys.

"These abnormalities are often observed in prenatal ultrasounds, but expectant parents want to have a sense of what their child will be like, will he or she learn to walk, talk, and see," said lead author Professor Enza Maria Valente from the Mendel Institute in Rome. "This type of research can give us answers to these important questions."

To find the gene responsible for Meckel-Gruber and Joubert syndromes, the researchers examined DNA from families with a history of the disorder, from skin cells donated by patients, and from cells grown in the laboratory. They also studied zebrafish, which were used because the embryos are transparent during development.

The work identified a previously unknown gene – TMEM216 – as a cause of Meckel-Gruber and Joubert syndromes. They also showed that the faulty TMEM216 gene stopped cells from making a protein that is needed for cilia signalling.

Because Meckel-Gruber and Joubert syndromes are recessive genetic disorders, only couples who both have a copy of the disease gene are at risk of conceiving babies with these birth defects. The condition is more common in certain close-knit populations where the gene has been passed down from generation to generation. These include families of Ashkenazi Jewish origin.

"Accurate genetic testing for TMEM216 will be particularly important for families throughout the world that have a history of ciliopathies caused by mutations to this gene," said Professor Attie-Bittach from the University of Paris.

"Now that we have identified a gene that causes Meckel-Gruber syndrome and Joubert syndrome, the role of particular signalling pathways as the embryo is developing can also be more clearly understood," added Professor Colin Johnson from the University of Leeds in the UK.

Additional contributors from the Neurogenetics Laboratory, Institute for Genomic Medicine, Department of Neurosciences and Pediatrics, Howard Hughes Medical Institute at UC San Diego include Jeong Ho Lee, Jennifer L Silhavy, Ji Eun Lee, Jerlyn C Tolentino and Dominika Swistun.

This work was supported by the National Institutes of Health, the Italian Ministry of Health, Pierfranco and Luisa Mariani Foundation, American Heart Association, BDF Newlife, the Medical Research Council and the Sir Jules Thorn Charitable Trust, l'Agence National pour la Recherche, Burroughs Wellcome Fund, Howard Hughes Medical Institute and a National Research Service Award fellowship.

Media contact: Debra Kain, 619-543-6163, ddkain@ucsd.edu

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>