Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty liver disease prevented in mice

04.06.2014

Studying mice, researchers have found a way to prevent nonalcoholic fatty liver disease, the most common cause of chronic liver disease worldwide.

Blocking a path that delivers dietary fructose to the liver prevented mice from developing the condition, according to investigators at Washington University School of Medicine in St. Louis.


Brian J. DeBosch

A transporter called GLUT8 (green) is in the outer membrane of liver cells. In mice, blocking GLUT8 stops fructose from entering the liver and protects against nonalcoholic fatty liver disease. The liver cell nuclei are shown in blue.

The study appears in a recent issue of The Journal of Biological Chemistry.

In people, nonalcoholic fatty liver disease often accompanies obesity, elevated blood sugar, high blood pressure and other markers of metabolic syndrome. Some estimate as many as 1 billion people worldwide have fatty liver disease, though some may not realize it.

“Fatty liver disease is a major topic of research right now,” said first author Brian J. DeBosch, MD, PhD, clinical fellow in pediatric gastroenterology. “There are competing hypotheses about the origins of metabolic syndrome. One of these hypotheses is that insulin resistance begins to develop in the liver first. The thought is if we can prevent the liver from becoming unhealthy to begin with, maybe we can block the entire process from moving forward.”

The research team, led by Kelle H. Moley, MD, the James P. Crane Professor of Obstetrics and Gynecology, showed that a molecule called GLUT8 carries large amounts of fructose into liver cells. Fructose is a type of sugar found in many foods. It is present naturally in fruit and is added to soft drinks and myriad other products in the form of high-fructose corn syrup.

Scientists have known that fructose is processed in the liver and stored there as fat in the form of triglycerides. In this study, researchers showed that blocking or eliminating GLUT8 in mice reduced the amount of fructose entering the organ and appeared to prevent the development of fatty livers. Mice with GLUT8 deficiency also appeared to burn liver fat at a faster rate than control mice.

“We showed that GLUT8 is required for fructose to get into the liver,” DeBosch said. “If you take away or block this transporter in mice, they no longer get diet-induced fatty liver disease.”

The researchers also saw differences between male and female mice in the degree to which they were protected from fatty livers and in whole-body metabolism. Male mice fed a high-fructose diet while deficient in GLUT8 still had evidence of fatty liver disease, but whole-body metabolism was healthy. They showed no evidence of metabolic syndrome in the rest of the body. Females fed fructose while lacking GLUT8, in contrast, had healthy looking livers but exhibited more evidence of whole-body metabolic syndrome.

“If the fructose doesn’t go into the liver, it may go to peripheral tissues,” DeBosch said. “Female mice with a GLUT8 deficiency had increased body fat. They also had increased circulating triglycerides and cholesterol.

“So the liver is healthier in female rodents, but you could argue that the whole body has worse overall metabolic syndrome,” he said. “This supports the idea of the liver acting as a sort of sink for processing fructose. The liver protects the whole body, but it may do so at its own expense.”

While DeBosch said future therapeutics might be able to target GLUT8 to block fructose from entering the liver, more work must be done to understand how this would impact the rest of the body.

“In a perfect world, it would be good if we could figure out a way to direct fructose to tissues in which you’re more likely to burn it than store it, such as in skeletal muscle,” he said.

In the meantime, DeBosch advises his pediatric patients, many of whom are overweight or obese, to avoid fructose, especially sugar-sweetened drinks, and to find ways to increase physical activity.

This work was supported by the Pediatric Scientist Development Program and the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health (NIH). Grant numbers K12HD000850-29, DDRCC P30 DK52574, R01 DK078187, and R01HD040390-07. The Washington University Mouse Phenotyping Core is supported by Diabetes Research and Training Center Grant P60 DK020579.

DeBosch BJ, Chen Z, Saben JL, Finck BN, Moley KH. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. The Journal of Biological Chemistry. April 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Eurek Alert!

Further reports about: Development Fatty Health Medicine burn deficiency evidence hospitals liver metabolic whole-body

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>