Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatal connection

08.05.2014

Deforestation of one of the last European primeval forests has far-reaching consequences for the plants and animals living there – this is shown in a large-scale study published by biologists from Marburg and their Polish partners in the journal “Nature Communications”. The authors take into account interactions of plants with pollinators on the one hand, and with seed dispersers on the other hand. The effects of deforestation on interaction partners are coupled to each other: If one knows the consequences for the pollinator, the consequences for seed dispersers can also be predicted.

“Many plants rely on pollination of their flowers by insects and also need birds or mammals that disperse the plant seeds", first author Jörg Albrecht explains. "In this case, pollinators and seed dispersers indirectly benefit each other because they increase the reproductive success and dispersal capacity of the shared food plants."


A woodpecker is feeding on the fruit of the Red currant (Ribes spicatum). By defecating the plant seeds elsewhere, the bird contributes to their dispersal.

(Photo: University of Marburg / Jörg Albrecht)


Core zone of the Białowieża National Park

(Photo: University of Marburg / Jörg Albrecht)

So far, most studies focus exclusively on a single type of interaction: e.g., on the relationship between predator and prey, or on the interaction of plants with their pollinators. But, as the authors point out, “the same species are often involved in multiple processes."

Scientists led by Associate Professor Dr. Nina Farwig and Professor Dr. Roland Brandl of the University of Marburg wanted to know whether the destruction of habitats acts in the same way on multiple interaction networks.

The researchers found strong evidence for coupled responses of pollinators and seed dispersers to logging: "Our findings signal an alarm," the authors write, "as they predict that the conversion of primary old-growth forest ecosystems to secondary habitats may involve a parallel loss of multiple animal-mediated ecosystem services."

Dr. Nina Farwig holds the Robert Bosch Junior Professorship for "Sustainable Use of Natural Resources" at the University of Marburg. The current study was part of the doctoral thesis of Jörg Albrecht in the "Conservation Ecology" group under the supervision of Nina Farwig.

The project was funded as part of a doctoral fellowship from the German Federal Environmental Foundation to Jörg Albrecht and by funds from the Robert Bosch Foundation to Nina Farwig. Co-author Professor Dr. Roland Brandl is head of the "Department of Ecology – Animal ecology" group at the University of Marburg.

Original publication: Jörg Albrecht & al.: Correlated loss of ecosystem services in coupled mutualistic networks, Nature Communications, 2014, DOI: 10.1038/ncomms4810

For more information:
Contact:
Jörg Albrecht, MSc.
Arbeitsgruppe Naturschutzökologie
Tel.: 06421 28-25385
E-Mail: joerg.albrecht@staff.uni-marburg.de

Juniorprofessorin Dr. Nina Farwig,
Arbeitsgruppe Naturschutzökologie
Tel.: 06421 28-23478
E-Mail: farwig@staff.uni-marburg.de
Homepage: http://www.uni-marburg.de/fb17/fachgebiete/oekologie/conserv_ecol

Johannes Scholten | idw - Informationsdienst Wissenschaft

Further reports about: Ecology ecology ecosystem ecosystems evidence flowers pollinators reproductive species

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>