Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat Sand Rats Are SAD Like Us

09.11.2010
TAU shines a light on a mood disorder

Saying goodbye to summer can be difficult for everybody. In some people the onset of winter triggers Seasonal Affective Disorder, or SAD, a mood disorder in which sufferers experience symptoms of depression. Happily, a special kind of gerbil exhibits remarkably similar reactions to SAD treatments as humans, opening a promising new channel for study and treatment of the common complaint.

With her work on the Israeli desert inhabitant gerbil called the Fat Sand Rat (Psammomys obesus), Prof. Noga Kronfeld-Schor of Tel Aviv University's Department of Zoology and her fellow researcher, Prof. Haim Einat of the University of Minnesota, have found new hope for the study of these and similar disorders. Her results, recently published in the International Journal of Neuropsychopharmacology, indicate that her new test subjects are more suitable model animal for the study of SAD than the rats and mice used previously.

Until now, Prof. Kronfeld-Schor explains, most research on the mechanisms of affective disorders was carried out on mice and rats. But this has been problematic in applying the research results to humans — mice are nocturnal, while humans are diurnal. Clearly, when we conduct research of disorders like SAD which affect our circadian system, she says, our model animals should be diurnal as well.

Different as night and day

Most laboratory mice don't produce melatonin, a natural hormone produced by humans and other mammals during the night. Moreover, as nocturnal animals, mice and rats become more active at night, when melatonin levels are high, while humans are active during the day, when melatonin levels are now. For most biomedical research, Prof. Kronfeld-Schor explains, mice are excellent model subjects. But for affective disorders, which rely heavily on the human circadian system, she hypothesized that a diurnal mammal would provide a superior animal model.

To test this theory, Prof. Kronfeld-Schor and her fellow researcher put two groups of Fat Sand Rats through several experiments. First, to test the effect of the length of light exposure on the rats' emotional state, one group was exposed to long hours of light similar to that of the summer season, and the other to shorter hours of the winter length daylight. In several tests, the sand rats of the second group behaved in ways similar to depressed humans, exhibiting despair, reduced social interactions and increased anxiety.

Once the researchers established that Fat Sand Rats and humans had a similar reaction to light, the team explored whether common medications or other SAD therapies would be as effective in their rat population. These studies included a variety of medications commonly used to treat the disorder in humans, as well as a program of exposing the depressed sand rats to brighter light for one hour every morning or evening.

More than a placebo

According to Prof. Kronfeld-Schor, the results were surprising. The medications were effective in treating the sand rats' depression, but even more effective was the daily exposure to bright light in the mornings, a common treatment for human SAD. "Humans have been using this treatment for a long time," she explains, "but many of us thought that a large part of its success was based on the placebo effect. For the first time, we've found it to be effective in animals as well, which weakens the possibility of the placebo effect."

The breakthrough, says Prof. Kronfeld-Schor, is the discovery of a superior and viable animal model for studying affective disorders. Though several biological mechanisms for SAD have been proposed, they have not been scientifically proven. A good animal model to study the mechanisms of SAD will advance understanding of the disorder, help screen for effective treatments and allow for the development of new therapies.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=13257

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>