Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat Sand Rats Are SAD Like Us

09.11.2010
TAU shines a light on a mood disorder

Saying goodbye to summer can be difficult for everybody. In some people the onset of winter triggers Seasonal Affective Disorder, or SAD, a mood disorder in which sufferers experience symptoms of depression. Happily, a special kind of gerbil exhibits remarkably similar reactions to SAD treatments as humans, opening a promising new channel for study and treatment of the common complaint.

With her work on the Israeli desert inhabitant gerbil called the Fat Sand Rat (Psammomys obesus), Prof. Noga Kronfeld-Schor of Tel Aviv University's Department of Zoology and her fellow researcher, Prof. Haim Einat of the University of Minnesota, have found new hope for the study of these and similar disorders. Her results, recently published in the International Journal of Neuropsychopharmacology, indicate that her new test subjects are more suitable model animal for the study of SAD than the rats and mice used previously.

Until now, Prof. Kronfeld-Schor explains, most research on the mechanisms of affective disorders was carried out on mice and rats. But this has been problematic in applying the research results to humans — mice are nocturnal, while humans are diurnal. Clearly, when we conduct research of disorders like SAD which affect our circadian system, she says, our model animals should be diurnal as well.

Different as night and day

Most laboratory mice don't produce melatonin, a natural hormone produced by humans and other mammals during the night. Moreover, as nocturnal animals, mice and rats become more active at night, when melatonin levels are high, while humans are active during the day, when melatonin levels are now. For most biomedical research, Prof. Kronfeld-Schor explains, mice are excellent model subjects. But for affective disorders, which rely heavily on the human circadian system, she hypothesized that a diurnal mammal would provide a superior animal model.

To test this theory, Prof. Kronfeld-Schor and her fellow researcher put two groups of Fat Sand Rats through several experiments. First, to test the effect of the length of light exposure on the rats' emotional state, one group was exposed to long hours of light similar to that of the summer season, and the other to shorter hours of the winter length daylight. In several tests, the sand rats of the second group behaved in ways similar to depressed humans, exhibiting despair, reduced social interactions and increased anxiety.

Once the researchers established that Fat Sand Rats and humans had a similar reaction to light, the team explored whether common medications or other SAD therapies would be as effective in their rat population. These studies included a variety of medications commonly used to treat the disorder in humans, as well as a program of exposing the depressed sand rats to brighter light for one hour every morning or evening.

More than a placebo

According to Prof. Kronfeld-Schor, the results were surprising. The medications were effective in treating the sand rats' depression, but even more effective was the daily exposure to bright light in the mornings, a common treatment for human SAD. "Humans have been using this treatment for a long time," she explains, "but many of us thought that a large part of its success was based on the placebo effect. For the first time, we've found it to be effective in animals as well, which weakens the possibility of the placebo effect."

The breakthrough, says Prof. Kronfeld-Schor, is the discovery of a superior and viable animal model for studying affective disorders. Though several biological mechanisms for SAD have been proposed, they have not been scientifically proven. A good animal model to study the mechanisms of SAD will advance understanding of the disorder, help screen for effective treatments and allow for the development of new therapies.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=13257

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>