Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where the Fat’s At

27.08.2010
In real estate, location is everything. The same might be said of lipids – those crucial cellular fats and oils that serve as building blocks for cells and as key energy sources for the body.

In a paper published in the September issue of the Journal of Lipid Research, a team of scientists, led by researchers at the University of California, San Diego School of Medicine, has mapped for the first time the actual locations of specific lipids within a single cell.

“This is groundbreaking analysis,” said Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry at UC San Diego and principal investigator of LIPID MAPS, a national consortium studying the structure and function of lipids. “We’ve defined not only which lipids are within a particular cell, but also where these lipids are located. That’s important because lipids do different things in a cell. They’re vital components of membranes. They’re involved in communications and signaling, both within cells and between cells. Where they are located – in a cell’s nucleus, its mitochondria, membrane or other organelle – is relevant to their function.”

And because most serious diseases are linked to specific organelle dysfunction, understanding what lipids do at the subcellular level is essential to elucidating how diseases ranging from atherosclerosis and arthritis to cancer and diabetes work – and how they might be better treated or prevented.

The focus of the lipid mapping was a cultured mouse macrophage or white blood cell, said Dennis, who also serves as editor-in-chief of the Journal of Lipid Research. Alexander Andreyev, PhD, a project scientist in the Dennis lab, extracted and separated organelles of the macrophage using advanced subcellular fractionation techniques. Scientists at collaborating universities then precisely identified and quantified the major lipid categories present with mass spectrometry. More than 220 individual molecular lipid species were identified and analyzed.

The analyses were conducted on macrophages in both resting and activated stages, the latter induced by exposing the cells to a specially synthesized chemical similar to a molecule found in bacteria pathogens. Called KLA, the chemical provokes a signaling cascade inside macrophages, activating their immune system response to infections.

“The idea was to see where targeted lipids were in macrophages at rest and how this changed upon infection,” said Dennis. “We discovered that numerous lipids change in abundance in the membrane and in organelles once a macrophage becomes active.”

Identifying these changes in specific lipids is expected to provide scientists with a deeper, more sophisticated understanding of how fats are involved in and influence disease processes, said Dennis.

“We’ve created a new picture of what’s happening in cells. Not an image, but a view at the molecular level where drugs interact and diseases are cured.”

The findings are part of the larger, on-going LIPID MAPS project, which received a second five-year renewal grant in 2008 for almost $38 million. The LIPID MAPS project is, in some ways, akin to the earlier Human Genome Project to inventory genes and similar endeavors with proteins (proteomics) and metabolites (metabolomics). It brings together researchers in a dozen research laboratories at nine universities, medical research institutes and life sciences companies. UC San Diego serves as lead institution and information clearinghouse.

“We’ve now identified many hundreds of lipids,” said Dennis, “but we have the capability of detecting many thousands. This has been a trail-blazing experiment. We can now go deeper into the cell.”

Co-authors of the study are Eoin Fahy, Xiang Li, Yihua Zhao and Shankar Subramaniam, San Diego Supercomputing Center, UC San Diego; Ziqiang Guan, Andrea Ryan and Christian R.H. Raetz, Department of Biochemistry, Duke University Medical Center; Samuel Kelly, Hyejung Park, Elaine Wang and Alfred Merrill, School of Biology, Georgia Institute of Technology; Jeffrey G. McDonald, Bonne M. Thompson and David W. Russell, University of Texas Southwestern Medical Center; and Steven Milne, David Myers and H. Alex Brown, Department of Pharmacology, Vanderbilt University.

Scott LaFee | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>