Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where the Fat’s At

27.08.2010
In real estate, location is everything. The same might be said of lipids – those crucial cellular fats and oils that serve as building blocks for cells and as key energy sources for the body.

In a paper published in the September issue of the Journal of Lipid Research, a team of scientists, led by researchers at the University of California, San Diego School of Medicine, has mapped for the first time the actual locations of specific lipids within a single cell.

“This is groundbreaking analysis,” said Edward A. Dennis, PhD, distinguished professor of pharmacology, chemistry and biochemistry at UC San Diego and principal investigator of LIPID MAPS, a national consortium studying the structure and function of lipids. “We’ve defined not only which lipids are within a particular cell, but also where these lipids are located. That’s important because lipids do different things in a cell. They’re vital components of membranes. They’re involved in communications and signaling, both within cells and between cells. Where they are located – in a cell’s nucleus, its mitochondria, membrane or other organelle – is relevant to their function.”

And because most serious diseases are linked to specific organelle dysfunction, understanding what lipids do at the subcellular level is essential to elucidating how diseases ranging from atherosclerosis and arthritis to cancer and diabetes work – and how they might be better treated or prevented.

The focus of the lipid mapping was a cultured mouse macrophage or white blood cell, said Dennis, who also serves as editor-in-chief of the Journal of Lipid Research. Alexander Andreyev, PhD, a project scientist in the Dennis lab, extracted and separated organelles of the macrophage using advanced subcellular fractionation techniques. Scientists at collaborating universities then precisely identified and quantified the major lipid categories present with mass spectrometry. More than 220 individual molecular lipid species were identified and analyzed.

The analyses were conducted on macrophages in both resting and activated stages, the latter induced by exposing the cells to a specially synthesized chemical similar to a molecule found in bacteria pathogens. Called KLA, the chemical provokes a signaling cascade inside macrophages, activating their immune system response to infections.

“The idea was to see where targeted lipids were in macrophages at rest and how this changed upon infection,” said Dennis. “We discovered that numerous lipids change in abundance in the membrane and in organelles once a macrophage becomes active.”

Identifying these changes in specific lipids is expected to provide scientists with a deeper, more sophisticated understanding of how fats are involved in and influence disease processes, said Dennis.

“We’ve created a new picture of what’s happening in cells. Not an image, but a view at the molecular level where drugs interact and diseases are cured.”

The findings are part of the larger, on-going LIPID MAPS project, which received a second five-year renewal grant in 2008 for almost $38 million. The LIPID MAPS project is, in some ways, akin to the earlier Human Genome Project to inventory genes and similar endeavors with proteins (proteomics) and metabolites (metabolomics). It brings together researchers in a dozen research laboratories at nine universities, medical research institutes and life sciences companies. UC San Diego serves as lead institution and information clearinghouse.

“We’ve now identified many hundreds of lipids,” said Dennis, “but we have the capability of detecting many thousands. This has been a trail-blazing experiment. We can now go deeper into the cell.”

Co-authors of the study are Eoin Fahy, Xiang Li, Yihua Zhao and Shankar Subramaniam, San Diego Supercomputing Center, UC San Diego; Ziqiang Guan, Andrea Ryan and Christian R.H. Raetz, Department of Biochemistry, Duke University Medical Center; Samuel Kelly, Hyejung Park, Elaine Wang and Alfred Merrill, School of Biology, Georgia Institute of Technology; Jeffrey G. McDonald, Bonne M. Thompson and David W. Russell, University of Texas Southwestern Medical Center; and Steven Milne, David Myers and H. Alex Brown, Department of Pharmacology, Vanderbilt University.

Scott LaFee | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>