Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your fat may help you heal

26.03.2010
Rice researcher extracts natural scaffold for tissue growth

It frequently happens in science that what you throw away turns out to be most valuable. It happened to Deepak Nagrath, but not for long.

The Rice assistant professor in chemical and biomolecular engineering was looking for ways to grow cells in a scaffold, and he discarded the sticky substance secreted by the cells.

"I thought it was contamination, so I threw the plates away," said Nagrath, then a research associate at Harvard Medical School.

That substance, derived from adipose cells -- aka body fat -- turned out to be a natural extracellular matrix, the very thing he was looking for.

Nagrath, who joined Rice in 2009, and his co-authors have since built a biological scaffold that allows cells to grow and mature. He hopes the new material, when suffused with stem cells, will someday be injected into the human body, where it can repair tissues of many types without fear of rejection.

The research by Nagrath and his co-authors appeared last week in the Federation of American Societies for Experimental Biology (FASEB) Journal.

The basic idea is simple: Prompt fat cells to secrete what bioengineers call "basement membrane." This membrane mimics the architecture tissues naturally use in cell growth, literally a framework to which cells attach while they form a network. When the cells have matured into the desired tissue, they secrete another substance that breaks down and destroys the scaffold.

Structures that support the growth of living cells into tissues are highly valuable to pharmaceutical companies for testing drugs in vitro. Companies commonly use Matrigel, a protein mixture secreted by mouse cancer cells, but for that reason it can't be injected into patients.

"Fat is one thing that is in excess in the body. We can always lose it," Nagrath said. The substance derived from the secretions, called Adipogel, has proven effective for growing hepatocytes, the primary liver cells often used for pharmaceutical testing.

"My approach is to force the cells to secrete a natural matrix," he said. That matrix is a honey-like gel that retains the natural growth factors, cytokines (substances that carry signals between cells) and hormones in the original tissue.

Nagrath's strategy for growing cells isn't the only approach being pursued, even at Rice: Another method reported last week in Nature Nanotechnology uses magnetic levitation to grow three-dimensional cell cultures.

But Nagrath is convinced his strategy is ultimately the most practical for rebuilding tissue in vivo, and not only because it may cost significantly less than Matrigel. "The short-term goal is to use this as a feeder layer for human embryonic stem cells. It's very hard to maintain them in the pluripotent state, where they keep dividing and are self-renewing," he said.

Once that goal is achieved, Adipogel may be just the ticket for transplanting cells to repair organs. "You can use this matrix as an adipogenic scaffold for stem cells and transplant it into the body where an organ is damaged. Then, we hope, these cells and the Adipogel can take over and improve their functionality."

Nagrath's co-authors are Nripen S. Sharma, a research associate at Rutgers University, and Martin Yarmush, the Helen Andrus Benedict Professor of Surgery and Bioengineering at Harvard Medical School.

The National Institutes of Health and the Shriners Hospitals for Children supported their research.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>