Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat cells become useful stem cells in tissue reconstruction

23.12.2010
Two studies appearing in the current issue of Cell Transplantation 19(10) discuss stem cells derived from adipose (fat) cells and their potential use in plastic surgery and tissue reconstruction. The studies are now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/ .

Adipose-derived stem cells maintain their "stemness" and could be useful for cell-based therapies A team of researchers from several institutions in Italy isolated and characterized adult fat cell-derived stem cells from patients undergoing lipoaspiration (surgical removal of fat deposits) in order to investigate the ability of the fat cells to maintain their stem cell characteristics in in vitro cultures to the point where once transplanted they could aid in tissue regeneration.

According to the study's corresponding authors Dr. Stefami Bucher of the San Gallicano Institute (Rome) and Dr. Rita Falcioni of the Regina Elena Cancer Institute (Rome), adipose tissues share several biological properties with bone marrow, they can be found in abundance, they can be obtained from patients undergoing noninvasive lipoaspirate procedures, and they have the potential to be useful in a range of therapeutic applications.

"The use of lipoaspirate as filling material is a powerful technique for tissue repair in plastic surgery," said Dr. Falcioni. "Increasingly, it is used in oncology to repair tissue damaged by surgical treatments, such as mastectomy. The use of purified adipose-derived stem cells might improve this surgical procedure by shortening the time to achieve esthetic results and thereby improving patient quality of life."

The researchers described adipose tissues as "highly specialized connective tissues" that help provide the body with an energy source, yet little research has investigated the transplant potential of adipose-derived stem cells.

"We strongly suggest that the adipose-derived stem cells we purified in our study could be applied in the near future for cell therapy using the cell-assisted lipotransfer technique."

Contact: Dr. Rita Falcioni, Regina Elena Cancer Institute, Department of Experimental Oncology, Molecular Oncogenesis Laboratory, Via delle Messi d'Oro, 156, 00158 Rome, Italy Tel:+ 39-06- 52662535; Fax: +39-06-52662505 Email: falcioni@ifo.it

Citation: Folgiero, V.; Migliano, E.; Tedesco, M.; Iacovelli, S.; Bon, G.; Torre, M. L.; Sacchi, A.; Marazzi, M.; Bucher, S.; Falcioni, R. Purification and characterization of adipose-derived stem cells from patients with lipoaspirate transplant. Cell Transplant. 19(10):1225-1235; 2010.

Plastic surgery meets regenerative medicine

"Progenitor, endothelial and mensenchymal stem cells derived from adipose tissues could be central to plastic and reconstructive surgery applications as well as represent the focus for therapies for a number of disease conditions, including those affecting bone, cartilage, muscle, liver, kidney, cardiac, neural and pancreatic tissue," said Dr. Camillo Ricordi, lead author on a paper by researchers from the University of Miami's Cell Transplant Center and Diabetes Research Institute.

According to Dr. Ricordi and colleagues, successful engraftment and long term survival of transplanted adipose tissue has increased interest in structural fat grafting, yet there is a high percentage (up to 70%) of tissue resorption over time. Adipose cells can also fall victim to trauma during harvesting. In contrast, progenitor cells have minimal metabolic requirements and tend to survive longer.

"Adipose-derived stem cells might very well represent the only tissue surviving transplantation," concluded Dr. Ricordi. "There is much more to be learned in tissue remodeling following adipose tissue transplantation and it is time to carefully re-examine the potential implications of autologous fat grafting as being more than the filler concept for which it was originally utilized."

"These two articles highlight the considerable promise for therapeutic and cosmetic benefit from the relatively new derivation of stem cells from fat cells," said Dr. Paul Sanberg, co-editor-in-chief of the journal Cell Transplantation and executive director of the University of South Florida Center of Excellence for Aging and Brain Repair. "It will be of great interest to see how the clinical use of these cells will develop."

Contact: Dr. Camillo Ricordi, Cell Transplant Center and Diabetes Research Institute, University of Miami, 1450 NW 10th Ave., Miami, FL, USA 33136, Tel:+ 305-243-4404; Fax: 305-243-6913 Email: ricordi@miami.edu

Citation: Tremolada, C.; Palmieri, G.; Ricordi, C. Adipocyte Transplantation and Stem Cells: Plastic Surgery Meets Regenerative Medicine. Cell Transplant. 19(10):1217-1223; 2010.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News Release by Randolph Fillmore, Florida Science Communications, Inc. www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.miami.edu
http://www.sciencescribe.net

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>