Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat cells in abdomen fuel spread of ovarian cancer

31.10.2011
Similar process may boost growth of other cancers

A large pad of fat cells that extends from the stomach and covers the intestines provides nutrients that promote the spread and growth of ovarian cancer, reports a research team based at the University of Chicago in the journal Nature Medicine, published online October 30th, 2011.

Ovarian cancer, the fifth leading cause of cancer deaths in women, tends to spread within the abdominal cavity as opposed to distant organs. In 80 percent of women, by the time ovarian cancer is diagnosed, it has spread to the pad of fat cells, called the omentum. Often, cancer growth in the omentum exceeds the growth of the original ovarian cancer.

"This fatty tissue, which is extraordinarily rich in energy-dense lipids, acts as a launching pad and energy source for the likely lethal spread of ovarian cancer," said study author Ernst Lengyel, MD, PhD, professor of obstetrics and gynecology at the University of Chicago. "The cells that make up the omentum contain the biological equivalent of jet fuel. They feed the cancer cells, enabling them to multiply rapidly. Gaining a better understanding of this process could help us learn how to disrupt it."

The researchers performed a series of experiments to identify the role of these fat cells as major mediators of ovarian cancer metastasis. The first step was to understand the biological signals that attract ovarian cancer cells to the omentum and use it for rapid growth.

The spread of ovarian cancer cells to the omentum can happen quickly. Ovarian cancer cells injected into the abdomen of healthy mice find their way to the omentum within 20 minutes. The researchers found that protein signals emitted by the omentum can attract the tumor cells. Inhibitors which disturbed these signals reduced this attraction by at least 50 percent.

Once ovarian cancer cells reach the omentum, they quickly develop the tools to devour the sustenance provided by this fatty tissue, reprogramming their metabolism to thrive on lipids acquired from fat cells. Ovarian cancer can rapidly convert the entire omentum, a soft fat pad, into a solid mass of cancer cells.

"This mechanism may not be limited to ovarian cancer cells," the authors note. Fat metabolism may also contribute to cancer development in other environments where fat cells are abundant, such as breast cancer.

A protein known as fatty acid binding protein (FABP4), a fat carrier, may be crucial to this process and could be a target for treatment.

When the researchers compared primary ovarian cancer tissue with ovarian cancer tissue which had spread to the omentum, they found that tumor cells next to omental fat cells produced high levels of FABP4. Cancer cells distant from the fat cells did not produce FABP4.

When they inhibited FABP4, the transfer of nutrients from fat cells to cancer cells was drastically reduced. Inhibition of FABP4 also reduced tumor growth and the ability of tumors to generate new blood vessels.

"Therefore," the authors wrote, "FABP4 emerges as an excellent target in the treatment of intra-abdominally disseminating tumors, which preferentially metastasize to adipose tissue such as ovarian, gastric, and colon cancers."

The research was supported by the National Institutes of Health, the Burroughs Wellcome Fund, the Committee on Cancer Biology at the University of Chicago and Bears Care, the charitable beneficiary of the Chicago Bears Football Club.

Additional authors include Kristin Nieman, Hilary Kenny, Carla Penicka, Andras Ladanyi, Marion Zillhardt, Iris Romero, Diane Yamada, Rebecca Buell-Gutbrod and Katja Gwin of the University of Chicago; Mark Carey and Gordon Mills of M.D. Anderson Cancer Center; Gökhan Hotamisligil of the Harvard School of Public Health, and Marcus Peter of Northwestern University.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>