Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fastest and the Brightest

07.06.2013
BODIPY–tetrazine derivatives as superbright bioorthogonal turn-on probes

American researchers have developed a probe for marking biomolecules that begins to fluoresce only when it is “switched on” by binding. As reported in the journal Angewandte Chemie, the reaction takes place very quickly and the difference in brightness between the “on” and “off” states is two orders of magnitude bigger than for conventional activatable probes.

Marking biomolecules in living cells with fluorescent probes is a well-established technique. New research possibilities open up when these probes are combined with bioorthogonal reactions. Such reactions can occur inside a living system without disrupting normal biochemical processes.

This makes it possible to generate “turn-on” probes: a bioorthogonal reaction binding partner is bound to the biomolecule of interest (without affecting it) and acts as an anchoring site for the fluorescent probe. The probe is devised so that its fluorescence is significantly increased when it binds to the anchoring site. Because the probes not bound to the target fluoresce far less, background fluorescence is reduced. This eliminates the need for complex washing procedures that delay observation of the cells.

For all of this to work, the probe system must work without a toxic catalyst, react quickly to allow for time-resolved observation of biological processes, and fluoresce very strongly after being “turned on” to maximize the signal–strength relative to the background. It has not previously been possible to meet all of these requirements in one system.

A team led by Ralph Weissleder at Massachusetts General Hospital and Harvard University has now developed a system that fits the bill: an unusually bright, fast reacting, biocompatible probe system with a large difference between the switched on and switched off states.

The new probe consists of two components: The first is a fluorescent dye called BODIPY (boron dipyrromethene), a three-ring system with a subunit made of one boron, two nitrogen, and two fluorine atoms. The second component is a tetrazine molecule, a six-membered ring containing four nitrogen and two carbon atoms. Tetrazine quenches the fluorescence of BODIPY, which passes incoming energy off to the tetrazine component without radiation instead of fluorescing.

Tetrazine simultaneously serves as a reagent for the bioorthogonal reaction.
The reaction partner is modified trans-cyclooctene (TCO), which the researchers couple to the biomolecule to be studied by means of an antibody. When the probe is added, the tetrazine binds to the TCO, giving off nitrogen and binding the probe to the biomolecule.

The reaction destroys the probe’s tetrazine group, turning off the quenching of the fluorescence and allowing the BODIPY molecule to glow an intense green. The researchers recorded fluorescence over a thousand times stronger than that of the probe in the “off” state. This is two orders of magnitude stronger than all previously described turn-on probes.

The success of this system is due to the particularly strong fluorescence quenching made possible by the special electronic constellation and spatial arrangement of the BODIPY and tetrazine components relative to each other.

About the Author
Dr. Weissleder is Professor at Harvard University, Director of the Center for Systems Biology at Massachusetts General Hospital in Boston and a member of the US National Academies Institute of Medicine. Dr. Weissleder’s research interests include the development of novel molecular imaging techniques, tools for early disease detection, and nanomaterials for systems analysis.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/investigator/ralph_weissleder
Title: BODIPY—Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301100

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>