Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fastest and the Brightest

07.06.2013
BODIPY–tetrazine derivatives as superbright bioorthogonal turn-on probes

American researchers have developed a probe for marking biomolecules that begins to fluoresce only when it is “switched on” by binding. As reported in the journal Angewandte Chemie, the reaction takes place very quickly and the difference in brightness between the “on” and “off” states is two orders of magnitude bigger than for conventional activatable probes.

Marking biomolecules in living cells with fluorescent probes is a well-established technique. New research possibilities open up when these probes are combined with bioorthogonal reactions. Such reactions can occur inside a living system without disrupting normal biochemical processes.

This makes it possible to generate “turn-on” probes: a bioorthogonal reaction binding partner is bound to the biomolecule of interest (without affecting it) and acts as an anchoring site for the fluorescent probe. The probe is devised so that its fluorescence is significantly increased when it binds to the anchoring site. Because the probes not bound to the target fluoresce far less, background fluorescence is reduced. This eliminates the need for complex washing procedures that delay observation of the cells.

For all of this to work, the probe system must work without a toxic catalyst, react quickly to allow for time-resolved observation of biological processes, and fluoresce very strongly after being “turned on” to maximize the signal–strength relative to the background. It has not previously been possible to meet all of these requirements in one system.

A team led by Ralph Weissleder at Massachusetts General Hospital and Harvard University has now developed a system that fits the bill: an unusually bright, fast reacting, biocompatible probe system with a large difference between the switched on and switched off states.

The new probe consists of two components: The first is a fluorescent dye called BODIPY (boron dipyrromethene), a three-ring system with a subunit made of one boron, two nitrogen, and two fluorine atoms. The second component is a tetrazine molecule, a six-membered ring containing four nitrogen and two carbon atoms. Tetrazine quenches the fluorescence of BODIPY, which passes incoming energy off to the tetrazine component without radiation instead of fluorescing.

Tetrazine simultaneously serves as a reagent for the bioorthogonal reaction.
The reaction partner is modified trans-cyclooctene (TCO), which the researchers couple to the biomolecule to be studied by means of an antibody. When the probe is added, the tetrazine binds to the TCO, giving off nitrogen and binding the probe to the biomolecule.

The reaction destroys the probe’s tetrazine group, turning off the quenching of the fluorescence and allowing the BODIPY molecule to glow an intense green. The researchers recorded fluorescence over a thousand times stronger than that of the probe in the “off” state. This is two orders of magnitude stronger than all previously described turn-on probes.

The success of this system is due to the particularly strong fluorescence quenching made possible by the special electronic constellation and spatial arrangement of the BODIPY and tetrazine components relative to each other.

About the Author
Dr. Weissleder is Professor at Harvard University, Director of the Center for Systems Biology at Massachusetts General Hospital in Boston and a member of the US National Academies Institute of Medicine. Dr. Weissleder’s research interests include the development of novel molecular imaging techniques, tools for early disease detection, and nanomaterials for systems analysis.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/investigator/ralph_weissleder
Title: BODIPY—Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301100

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>