Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fastest and the Brightest

07.06.2013
BODIPY–tetrazine derivatives as superbright bioorthogonal turn-on probes

American researchers have developed a probe for marking biomolecules that begins to fluoresce only when it is “switched on” by binding. As reported in the journal Angewandte Chemie, the reaction takes place very quickly and the difference in brightness between the “on” and “off” states is two orders of magnitude bigger than for conventional activatable probes.

Marking biomolecules in living cells with fluorescent probes is a well-established technique. New research possibilities open up when these probes are combined with bioorthogonal reactions. Such reactions can occur inside a living system without disrupting normal biochemical processes.

This makes it possible to generate “turn-on” probes: a bioorthogonal reaction binding partner is bound to the biomolecule of interest (without affecting it) and acts as an anchoring site for the fluorescent probe. The probe is devised so that its fluorescence is significantly increased when it binds to the anchoring site. Because the probes not bound to the target fluoresce far less, background fluorescence is reduced. This eliminates the need for complex washing procedures that delay observation of the cells.

For all of this to work, the probe system must work without a toxic catalyst, react quickly to allow for time-resolved observation of biological processes, and fluoresce very strongly after being “turned on” to maximize the signal–strength relative to the background. It has not previously been possible to meet all of these requirements in one system.

A team led by Ralph Weissleder at Massachusetts General Hospital and Harvard University has now developed a system that fits the bill: an unusually bright, fast reacting, biocompatible probe system with a large difference between the switched on and switched off states.

The new probe consists of two components: The first is a fluorescent dye called BODIPY (boron dipyrromethene), a three-ring system with a subunit made of one boron, two nitrogen, and two fluorine atoms. The second component is a tetrazine molecule, a six-membered ring containing four nitrogen and two carbon atoms. Tetrazine quenches the fluorescence of BODIPY, which passes incoming energy off to the tetrazine component without radiation instead of fluorescing.

Tetrazine simultaneously serves as a reagent for the bioorthogonal reaction.
The reaction partner is modified trans-cyclooctene (TCO), which the researchers couple to the biomolecule to be studied by means of an antibody. When the probe is added, the tetrazine binds to the TCO, giving off nitrogen and binding the probe to the biomolecule.

The reaction destroys the probe’s tetrazine group, turning off the quenching of the fluorescence and allowing the BODIPY molecule to glow an intense green. The researchers recorded fluorescence over a thousand times stronger than that of the probe in the “off” state. This is two orders of magnitude stronger than all previously described turn-on probes.

The success of this system is due to the particularly strong fluorescence quenching made possible by the special electronic constellation and spatial arrangement of the BODIPY and tetrazine components relative to each other.

About the Author
Dr. Weissleder is Professor at Harvard University, Director of the Center for Systems Biology at Massachusetts General Hospital in Boston and a member of the US National Academies Institute of Medicine. Dr. Weissleder’s research interests include the development of novel molecular imaging techniques, tools for early disease detection, and nanomaterials for systems analysis.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/investigator/ralph_weissleder
Title: BODIPY—Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301100

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>