Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Fastest and the Brightest

07.06.2013
BODIPY–tetrazine derivatives as superbright bioorthogonal turn-on probes

American researchers have developed a probe for marking biomolecules that begins to fluoresce only when it is “switched on” by binding. As reported in the journal Angewandte Chemie, the reaction takes place very quickly and the difference in brightness between the “on” and “off” states is two orders of magnitude bigger than for conventional activatable probes.

Marking biomolecules in living cells with fluorescent probes is a well-established technique. New research possibilities open up when these probes are combined with bioorthogonal reactions. Such reactions can occur inside a living system without disrupting normal biochemical processes.

This makes it possible to generate “turn-on” probes: a bioorthogonal reaction binding partner is bound to the biomolecule of interest (without affecting it) and acts as an anchoring site for the fluorescent probe. The probe is devised so that its fluorescence is significantly increased when it binds to the anchoring site. Because the probes not bound to the target fluoresce far less, background fluorescence is reduced. This eliminates the need for complex washing procedures that delay observation of the cells.

For all of this to work, the probe system must work without a toxic catalyst, react quickly to allow for time-resolved observation of biological processes, and fluoresce very strongly after being “turned on” to maximize the signal–strength relative to the background. It has not previously been possible to meet all of these requirements in one system.

A team led by Ralph Weissleder at Massachusetts General Hospital and Harvard University has now developed a system that fits the bill: an unusually bright, fast reacting, biocompatible probe system with a large difference between the switched on and switched off states.

The new probe consists of two components: The first is a fluorescent dye called BODIPY (boron dipyrromethene), a three-ring system with a subunit made of one boron, two nitrogen, and two fluorine atoms. The second component is a tetrazine molecule, a six-membered ring containing four nitrogen and two carbon atoms. Tetrazine quenches the fluorescence of BODIPY, which passes incoming energy off to the tetrazine component without radiation instead of fluorescing.

Tetrazine simultaneously serves as a reagent for the bioorthogonal reaction.
The reaction partner is modified trans-cyclooctene (TCO), which the researchers couple to the biomolecule to be studied by means of an antibody. When the probe is added, the tetrazine binds to the TCO, giving off nitrogen and binding the probe to the biomolecule.

The reaction destroys the probe’s tetrazine group, turning off the quenching of the fluorescence and allowing the BODIPY molecule to glow an intense green. The researchers recorded fluorescence over a thousand times stronger than that of the probe in the “off” state. This is two orders of magnitude stronger than all previously described turn-on probes.

The success of this system is due to the particularly strong fluorescence quenching made possible by the special electronic constellation and spatial arrangement of the BODIPY and tetrazine components relative to each other.

About the Author
Dr. Weissleder is Professor at Harvard University, Director of the Center for Systems Biology at Massachusetts General Hospital in Boston and a member of the US National Academies Institute of Medicine. Dr. Weissleder’s research interests include the development of novel molecular imaging techniques, tools for early disease detection, and nanomaterials for systems analysis.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/investigator/ralph_weissleder
Title: BODIPY—Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301100

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Tiny microbots that can clean up water
29.04.2016 | Max-Planck-Institut für Intelligente Systeme

nachricht Candidalysin – the first toxin of Candida albicans
29.04.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Candidalysin – the first toxin of Candida albicans

29.04.2016 | Life Sciences

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>