Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster resistance analysis for patients with blood poisoning

25.09.2015

When treating cases of blood poisoning, doctors resort immediately to broad-spectrum antibiotics. The problem is that in many cases the bacteria are resistant to the medicine. Analyzing antibiotic resistance is a time-consuming process, and for many patients the results come too late. Now a new technique that supplies results in just nine hours is to be presented at the Biotechnica trade show in Hanover from October 6-8 (Hall 9, booth C34).

For patients with blood poisoning, also known as septicemia, every second counts. Doctors who suspect a patient has sepsis start them on broad-spectrum antibiotics right away, but the antibiotics don’t always have the desired effect – for instance if the bacteria are resistant to the medicines used.


A new technique for analyzing antibiotic resistance.

Volker Lannert, Fraunhofer FIT

Identifying the pathogens in the lab and investigating their potential resistance routinely takes between 60 and 100 hours. This is time the patient simply doesn’t have – most cases end fatally within around 48 hours. Blood poisoning accounts for 60,000 deaths a year in Germany alone.

Test results in nine hours
In future, this analysis could take much less time – saving many patients’ lives. Once doctors know whether the bacteria are resistant to certain substances, they can treat the patient with a targeted antibiotic that reliably kills off the pathogen.

This is possible thanks to a technology developed by the researchers at the Fraunhofer Institutes for Applied Information Technology FIT and for Laser Technology ILT in collaboration with the Uniklinikum Aachen and numerous industry partners. “Our testing method yields results in just nine hours,” says Professor Harald Mathis, department head at Fraunhofer FIT.

Which antibiotic?

So how are researchers now able to analyze the bacteria in a blood sample up to ten times faster than before? “We’ve developed a miniaturized system with a patented optical design,” reveals Mathis. The first step is to mark the pathogens indicative of septicemia, so that they glow when exposed to laser light. This then allows the researchers to assess the amount of bacteria present in the blood.

In the next stage of the process, the bacteria are separated from the blood and channeled into a series of miniaturized dishes. Each contains a culture medium that includes a specific antibiotic. A second optical system complete with the necessary analysis software observes and precisely documents how the bacteria develop.

Then comes the key step: algorithms analyze the pictures taken of the bacteria and extrapolate the growth curve, meaning the researchers can see within hours whether the respective medicine is working or whether the bacteria are resistant to it and spreading rapidly. Essentially, the growth monitor software is able to calculate and predict how bacteria will develop over time.

It does so by analyzing both the extent of the bacterial growth – which provides a one-to-one indication of the number of bacteria present – and the ratio of living to dead bacteria. In short: This tells researchers which antibiotic will be most effective in killing off the bacteria – and help the patient the most.

Researchers will be showcasing a prototype of the growth monitor at the Biotechnica trade show in Hanover from October 6-8 (Hall 9, booth C34).

Birgit Niesing | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

Further reports about: analysis software antibiotic antibiotics bacteria blood laser light pathogens poisoning septicemia

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>