Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster resistance analysis for patients with blood poisoning

25.09.2015

When treating cases of blood poisoning, doctors resort immediately to broad-spectrum antibiotics. The problem is that in many cases the bacteria are resistant to the medicine. Analyzing antibiotic resistance is a time-consuming process, and for many patients the results come too late. Now a new technique that supplies results in just nine hours is to be presented at the Biotechnica trade show in Hanover from October 6-8 (Hall 9, booth C34).

For patients with blood poisoning, also known as septicemia, every second counts. Doctors who suspect a patient has sepsis start them on broad-spectrum antibiotics right away, but the antibiotics don’t always have the desired effect – for instance if the bacteria are resistant to the medicines used.


A new technique for analyzing antibiotic resistance.

Volker Lannert, Fraunhofer FIT

Identifying the pathogens in the lab and investigating their potential resistance routinely takes between 60 and 100 hours. This is time the patient simply doesn’t have – most cases end fatally within around 48 hours. Blood poisoning accounts for 60,000 deaths a year in Germany alone.

Test results in nine hours
In future, this analysis could take much less time – saving many patients’ lives. Once doctors know whether the bacteria are resistant to certain substances, they can treat the patient with a targeted antibiotic that reliably kills off the pathogen.

This is possible thanks to a technology developed by the researchers at the Fraunhofer Institutes for Applied Information Technology FIT and for Laser Technology ILT in collaboration with the Uniklinikum Aachen and numerous industry partners. “Our testing method yields results in just nine hours,” says Professor Harald Mathis, department head at Fraunhofer FIT.

Which antibiotic?

So how are researchers now able to analyze the bacteria in a blood sample up to ten times faster than before? “We’ve developed a miniaturized system with a patented optical design,” reveals Mathis. The first step is to mark the pathogens indicative of septicemia, so that they glow when exposed to laser light. This then allows the researchers to assess the amount of bacteria present in the blood.

In the next stage of the process, the bacteria are separated from the blood and channeled into a series of miniaturized dishes. Each contains a culture medium that includes a specific antibiotic. A second optical system complete with the necessary analysis software observes and precisely documents how the bacteria develop.

Then comes the key step: algorithms analyze the pictures taken of the bacteria and extrapolate the growth curve, meaning the researchers can see within hours whether the respective medicine is working or whether the bacteria are resistant to it and spreading rapidly. Essentially, the growth monitor software is able to calculate and predict how bacteria will develop over time.

It does so by analyzing both the extent of the bacterial growth – which provides a one-to-one indication of the number of bacteria present – and the ratio of living to dead bacteria. In short: This tells researchers which antibiotic will be most effective in killing off the bacteria – and help the patient the most.

Researchers will be showcasing a prototype of the growth monitor at the Biotechnica trade show in Hanover from October 6-8 (Hall 9, booth C34).

Birgit Niesing | Fraunhofer-Gesellschaft
Further information:
http://www.fraunhofer.de

Further reports about: analysis software antibiotic antibiotics bacteria blood laser light pathogens poisoning septicemia

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

International team publishes roadmap to enhance radioresistance for space colonization

21.02.2018 | Physics and Astronomy

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>