Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This faster-growing E. coli strain's a good thing

12.11.2010
A University of Illinois metabolic engineer has improved a strain of E. coli, making it grow faster. Don't worry, he believes his efforts will benefit human health, not decimate it.

"The average person hears E. coli and thinks of E. coli 0157:H7, a microorganism that causes horrific food poisoning, but we've developed a strain of E. coli that is suitable for mass production of high-quality DNA that could be used in vaccines or gene therapy," said Yong-Su Jin, a U of I assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

According to Jin, industrial strains of E. coli have already been used to produce such diverse products as insulin for diabetics, enzymes used in laundry detergent, and polymer substitutes in carpets and plastic.

"E. coli bacteria have contributed vastly to our scientific understanding of genes, proteins, and the genome as a model system of biology research," he added.

Jin worked with E. coli DH5á, a laboratory strain that had excellent potential but grew very slowly.

When scientists began to use E. coli DH5á in biotechnological research years ago, they handicapped it, causing some of the genes to mutate so it would meet the requirements of molecular biology experiments. There was a trade-off, though—the strain's slow growth in minimal media, commonly used in laboratory and industrial fermentations.

"E. coli DH5á has been so popular that scientists have used it to perform most recombinant DNA techniques. But its slow growth has been a critical weakness," Jin noted.

Because scientists had used random mutagenesis, they weren't sure where the mutation that caused the slow growth had occurred. Jin and his colleagues were able to locate and fix the problem.

"We learned that the scientists had unintentionally weakened a key enzyme in a gene in the nucleotide biosynthesis pathway. When we reversed this mutation, the modified strain grew as quickly as other types of E. coli used in industry while retaining the traits that make it useful in scientific experiments," he said.

The beauty of the new strain lies in the purity and abundance of the DNA that it contains, which makes it a candidate for use in important biotechnological applications, he said.

"For example, to make DNA vaccines and perform gene therapy, we need DNA that is extremely clean and pure. The E. coli strain we have developed is an excellent candidate to deliver this high-quality genetic material in large quantities," he said.

The research was published in the Sept. 15 issue of Applied and Environmental Microbiology. Co-authors are Suk-Chae Jung, Ki-Sung Lee, Min-Eui Hong, and Dae Hyuk Kweon of Korea's Sungkyunkwan University; and Chris L. Smith and Gregory Stephanopoulos of the Massachusetts Institute of Technology. The study was funded by an MIT Energy initiative, a National Science Foundation grant, and a Korea Research Foundation grant.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>