Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This faster-growing E. coli strain's a good thing

12.11.2010
A University of Illinois metabolic engineer has improved a strain of E. coli, making it grow faster. Don't worry, he believes his efforts will benefit human health, not decimate it.

"The average person hears E. coli and thinks of E. coli 0157:H7, a microorganism that causes horrific food poisoning, but we've developed a strain of E. coli that is suitable for mass production of high-quality DNA that could be used in vaccines or gene therapy," said Yong-Su Jin, a U of I assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

According to Jin, industrial strains of E. coli have already been used to produce such diverse products as insulin for diabetics, enzymes used in laundry detergent, and polymer substitutes in carpets and plastic.

"E. coli bacteria have contributed vastly to our scientific understanding of genes, proteins, and the genome as a model system of biology research," he added.

Jin worked with E. coli DH5á, a laboratory strain that had excellent potential but grew very slowly.

When scientists began to use E. coli DH5á in biotechnological research years ago, they handicapped it, causing some of the genes to mutate so it would meet the requirements of molecular biology experiments. There was a trade-off, though—the strain's slow growth in minimal media, commonly used in laboratory and industrial fermentations.

"E. coli DH5á has been so popular that scientists have used it to perform most recombinant DNA techniques. But its slow growth has been a critical weakness," Jin noted.

Because scientists had used random mutagenesis, they weren't sure where the mutation that caused the slow growth had occurred. Jin and his colleagues were able to locate and fix the problem.

"We learned that the scientists had unintentionally weakened a key enzyme in a gene in the nucleotide biosynthesis pathway. When we reversed this mutation, the modified strain grew as quickly as other types of E. coli used in industry while retaining the traits that make it useful in scientific experiments," he said.

The beauty of the new strain lies in the purity and abundance of the DNA that it contains, which makes it a candidate for use in important biotechnological applications, he said.

"For example, to make DNA vaccines and perform gene therapy, we need DNA that is extremely clean and pure. The E. coli strain we have developed is an excellent candidate to deliver this high-quality genetic material in large quantities," he said.

The research was published in the Sept. 15 issue of Applied and Environmental Microbiology. Co-authors are Suk-Chae Jung, Ki-Sung Lee, Min-Eui Hong, and Dae Hyuk Kweon of Korea's Sungkyunkwan University; and Chris L. Smith and Gregory Stephanopoulos of the Massachusetts Institute of Technology. The study was funded by an MIT Energy initiative, a National Science Foundation grant, and a Korea Research Foundation grant.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>