Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This faster-growing E. coli strain's a good thing

12.11.2010
A University of Illinois metabolic engineer has improved a strain of E. coli, making it grow faster. Don't worry, he believes his efforts will benefit human health, not decimate it.

"The average person hears E. coli and thinks of E. coli 0157:H7, a microorganism that causes horrific food poisoning, but we've developed a strain of E. coli that is suitable for mass production of high-quality DNA that could be used in vaccines or gene therapy," said Yong-Su Jin, a U of I assistant professor of microbial genomics and a faculty member in its Institute for Genomic Biology.

According to Jin, industrial strains of E. coli have already been used to produce such diverse products as insulin for diabetics, enzymes used in laundry detergent, and polymer substitutes in carpets and plastic.

"E. coli bacteria have contributed vastly to our scientific understanding of genes, proteins, and the genome as a model system of biology research," he added.

Jin worked with E. coli DH5á, a laboratory strain that had excellent potential but grew very slowly.

When scientists began to use E. coli DH5á in biotechnological research years ago, they handicapped it, causing some of the genes to mutate so it would meet the requirements of molecular biology experiments. There was a trade-off, though—the strain's slow growth in minimal media, commonly used in laboratory and industrial fermentations.

"E. coli DH5á has been so popular that scientists have used it to perform most recombinant DNA techniques. But its slow growth has been a critical weakness," Jin noted.

Because scientists had used random mutagenesis, they weren't sure where the mutation that caused the slow growth had occurred. Jin and his colleagues were able to locate and fix the problem.

"We learned that the scientists had unintentionally weakened a key enzyme in a gene in the nucleotide biosynthesis pathway. When we reversed this mutation, the modified strain grew as quickly as other types of E. coli used in industry while retaining the traits that make it useful in scientific experiments," he said.

The beauty of the new strain lies in the purity and abundance of the DNA that it contains, which makes it a candidate for use in important biotechnological applications, he said.

"For example, to make DNA vaccines and perform gene therapy, we need DNA that is extremely clean and pure. The E. coli strain we have developed is an excellent candidate to deliver this high-quality genetic material in large quantities," he said.

The research was published in the Sept. 15 issue of Applied and Environmental Microbiology. Co-authors are Suk-Chae Jung, Ki-Sung Lee, Min-Eui Hong, and Dae Hyuk Kweon of Korea's Sungkyunkwan University; and Chris L. Smith and Gregory Stephanopoulos of the Massachusetts Institute of Technology. The study was funded by an MIT Energy initiative, a National Science Foundation grant, and a Korea Research Foundation grant.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>