Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster fish thanks to nMLF neurons

25.07.2014

Scientists discover the transmission used by zebrafish to change to another gear

As we walk along a street, we can stroll at a leisurely pace, walk quickly, or run. The various leg movements needed to do this are controlled by special neuron bundles in the spinal cord. It is not quite clear how these central pattern generators know how quickly the legs are to be moved.


Looking into the brain of a zebrafish larva. The neurons in the retina (green) send their signals from the eyes (yellow) to the brain. The cells linking the brain and spinal cord appear in red.

© MPI of Neurobiology / Portugues

An international team working with scientists from Harvard University and the Max Planck Institute of Neurobiology in Martinsried has now discovered individual neurons in the brain of zebrafish larvae that control the animals' swimming speed. Human movements are also controlled by central pattern generators. The results represent an important step in gaining a better understanding of how rhythmic movements are modulated.

As young children, we learn how to place one foot in front of the other at a steady pace. Once this has been learned, small bundles of neurons in the spinal cord - the central pattern generators (CPG) - ensure that this sequence happens almost automatically: we do not need to think about when and how far away we should place our foot down when we take each step. Once they are operational, the CPG neurons do not need any further stimulus to transmit their impulses. But how are these cells stimulated, and how does the brain tell them how quickly the legs need to be moved?

Ruben Portugues and his colleagues have studied zebrafish larvae to investigate how the brain and the CPGs are connected. The animals use various methods to increase their speed: they can beat their tails for longer periods of time, move the tail to and fro more vigorously, reduce the time between periods of tail movements such that these periods called bouts happen more frequently or switch to a completely different movement rhythm or gait - like a horse that changes from a trot to a gallop.

To understand how the brain triggers these various types of swimming movements, the neurobiologists concentrated on a group of around 20 neurons which send out their extensions from the midbrain to the spinal cord. The scientists already knew that the cells in this nMLF region are active during swimming. They were now able to show that stimulating these cells triggered swimming movements. As the researchers now report in the journal Neuron, the cells in the central pattern generator receive the initial stimulus for a movement from neurons in the nMLF region. They also discovered that it is almost impossible for the fish to regulate their swimming speed if four particular nMLF cells are switched off.

Calcium-sensitive dyes can be used to image neuronal activity. As zebrafish larvae are transparent, the scientists were able to observe the activity of individual nMLF cells directly through the microscope. "It was especially exciting when the animals changed their speed," reports Ruben Portugues, who was recently appointed Leader of a Research Group at the Max Planck Institute of Neurobiology. "We had actually expected that more nMLF cells would simply be activated simultaneously to enable the fish to swim faster."

Instead, the scientists discovered that neurons which were already active became even more active when swimming faster. "We don't yet know the details of how a higher level of activity leads to faster movements," says Portugues. However, the scientists can demonstrate that individual nMLF cells, known as MeLR cells, control the length of swimming periods and MeLc cells, as they are known, control the frequency to the tail beating. To date, scientists were aware of the nMLF region and its cells, but nobody knew what they control or how they do it. "Now that we have found the transmission, as it were, for the swimming movements, the next question to be answered is how and where the brain decides what gear it wants to engage," says Ruben Portugues, summing up the next challenge.

Contact 

Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514

 

Dr. Ruben Portugues

Max Planck Research Group

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3492

 

Original publication

 
Kristen Severi*, Ruben Portugues*, Joao Marques, Donald O'Malley, Michael Orger, Florian Engert (*equal contribution)
Neural control and modulation of swimming speed in the larval zebrafish
Neuron, 24 July 2014

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Neurobiology activity animals larvae movements neurons spinal swimming tail zebrafish

More articles from Life Sciences:

nachricht Building a better battery
29.06.2016 | Texas A&M University

nachricht New way out: Researchers show how stem cells exit bloodstream
29.06.2016 | North Carolina State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>