Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Faster fish thanks to nMLF neurons


Scientists discover the transmission used by zebrafish to change to another gear

As we walk along a street, we can stroll at a leisurely pace, walk quickly, or run. The various leg movements needed to do this are controlled by special neuron bundles in the spinal cord. It is not quite clear how these central pattern generators know how quickly the legs are to be moved.

Looking into the brain of a zebrafish larva. The neurons in the retina (green) send their signals from the eyes (yellow) to the brain. The cells linking the brain and spinal cord appear in red.

© MPI of Neurobiology / Portugues

An international team working with scientists from Harvard University and the Max Planck Institute of Neurobiology in Martinsried has now discovered individual neurons in the brain of zebrafish larvae that control the animals' swimming speed. Human movements are also controlled by central pattern generators. The results represent an important step in gaining a better understanding of how rhythmic movements are modulated.

As young children, we learn how to place one foot in front of the other at a steady pace. Once this has been learned, small bundles of neurons in the spinal cord - the central pattern generators (CPG) - ensure that this sequence happens almost automatically: we do not need to think about when and how far away we should place our foot down when we take each step. Once they are operational, the CPG neurons do not need any further stimulus to transmit their impulses. But how are these cells stimulated, and how does the brain tell them how quickly the legs need to be moved?

Ruben Portugues and his colleagues have studied zebrafish larvae to investigate how the brain and the CPGs are connected. The animals use various methods to increase their speed: they can beat their tails for longer periods of time, move the tail to and fro more vigorously, reduce the time between periods of tail movements such that these periods called bouts happen more frequently or switch to a completely different movement rhythm or gait - like a horse that changes from a trot to a gallop.

To understand how the brain triggers these various types of swimming movements, the neurobiologists concentrated on a group of around 20 neurons which send out their extensions from the midbrain to the spinal cord. The scientists already knew that the cells in this nMLF region are active during swimming. They were now able to show that stimulating these cells triggered swimming movements. As the researchers now report in the journal Neuron, the cells in the central pattern generator receive the initial stimulus for a movement from neurons in the nMLF region. They also discovered that it is almost impossible for the fish to regulate their swimming speed if four particular nMLF cells are switched off.

Calcium-sensitive dyes can be used to image neuronal activity. As zebrafish larvae are transparent, the scientists were able to observe the activity of individual nMLF cells directly through the microscope. "It was especially exciting when the animals changed their speed," reports Ruben Portugues, who was recently appointed Leader of a Research Group at the Max Planck Institute of Neurobiology. "We had actually expected that more nMLF cells would simply be activated simultaneously to enable the fish to swim faster."

Instead, the scientists discovered that neurons which were already active became even more active when swimming faster. "We don't yet know the details of how a higher level of activity leads to faster movements," says Portugues. However, the scientists can demonstrate that individual nMLF cells, known as MeLR cells, control the length of swimming periods and MeLc cells, as they are known, control the frequency to the tail beating. To date, scientists were aware of the nMLF region and its cells, but nobody knew what they control or how they do it. "Now that we have found the transmission, as it were, for the swimming movements, the next question to be answered is how and where the brain decides what gear it wants to engage," says Ruben Portugues, summing up the next challenge.


Dr. Stefanie Merker

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3514


Dr. Ruben Portugues

Max Planck Research Group

Max Planck Institute of Neurobiology, Martinsried

Phone: +49 89 8578-3492


Original publication

Kristen Severi*, Ruben Portugues*, Joao Marques, Donald O'Malley, Michael Orger, Florian Engert (*equal contribution)
Neural control and modulation of swimming speed in the larval zebrafish
Neuron, 24 July 2014

Dr. Stefanie Merker | Max-Planck-Institute

Further reports about: Neurobiology activity animals larvae movements neurons spinal swimming tail zebrafish

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>