Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast, low-cost device uses the cloud to speed up diagnostic testing for HIV and more

25.01.2013
Mobile device can easily be used in remote areas around the world

Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering, has taken his innovative lab-on-a-chip and developed a way to not only check a patient's HIV status anywhere in the world with just a finger prick, but also synchronize the results automatically and instantaneously with central health-care records—10 times faster, the researchers say, than the benchtop ELISA, a broadly used diagnostic technique. The device was field-tested in Rwanda by a collaborative team from the Sia lab and ICAP at Columbia's Mailman School of Public Health.

In the study published online January 18, 2013, in Clinical Chemistry, and in the print April 2013 issue, Sia describes a major advance towards providing people in remote areas of the world with laboratory-quality diagnostic services traditionally available only in centralized health care settings.

"We've built a handheld mobile device that can perform laboratory-quality HIV testing, and do it in just 15 minutes and on finger-pricked whole blood," Sia says. "And, unlike current HIV rapid tests, our device can pick up positive samples normally missed by lateral flow tests, and automatically synchronize the test results with patient health records across the globe using both the cell phone and satellite networks."

Sia collaborated with Claros Diagnostics (a company he co-founded, now called OPKO Diagnostics) to develop a pioneering strategy for an integrated microfluidic-based diagnostic device—the mChip—that can perform complex laboratory assays, and do so with such simplicity that these tests can easily be carried out anywhere, including in resource-limited settings, at a very low cost. This new study builds upon his earlier scientific concepts and incorporates a number of new engineering elements that make the test automated to run with data communication over both cell phone and satellite networks.

"There are a set of core functions that such a mobile device has to deliver," he says. "These include fluid pumping, optical detection, and real-time synchronization of diagnostic results with patient records in the cloud. We've been able to engineer all these functions on a handheld mobile device and all powered by a battery."

This new technology, which combines cell phone and satellite communication technologies with fluid miniaturization techniques for performing all essential ELISA functions, could lead to diagnosis and treatment for HIV-infected people who, because they cannot get to centralized health care centers, do not get tested or treated.

"This is an important step forward for us towards making a real impact on patients," says Jessica Justman, MD, senior technical director at ICAP and associate clinical professor of medicine in epidemiology at the Mailman School of Public Health. "And with the real-time data upload, policymakers and epidemiologists can also monitor disease prevalence across geographical regions more quickly and effectively."

Working with ICAP, OPKO, the Rwandan Ministry of Health, and Rwandan collaborators at Muhima Hospital and two health clinics—Projet San Francisco and Projet Ubuzima, Sia and his team assessed the device's ability to perform HIV testing and then synchronized results in real time with the patients' electronic health records. They successfully tested over 200 serum, plasma, and whole blood samples, all collected in Rwanda.

The mobile device also successfully transmitted all whole-blood test results from a Rwandan clinic to a medical records database stored on the cloud. The device produced results in agreement with a leading ELISA test, including detection of weakly positive samples that were missed by existing rapid tests. The device operated autonomously with minimal user input, produced each result in 15 minutes (compared to 3 hours with the benchtop ELISA), and consumed as little power as a mobile phone.

This latest study builds on previous work from the Sia Lab on building a lab-on-a-chip for personal health diagnosis. For this earlier device, Columbia University was named a Medical Devices runner-up in The Wall Street Journal's prestigious Technology Innovation Awards in 2011.

This research has been funded by a $2-million Saving Lives at Birth transition grant (United States Agency for International Development, the Bill & Melinda Gates Foundation, Government of Norway, Grand Challenges Canada, and the World Bank).

Sia's next step will be to implement an antenatal care panel for diagnosing HIV and sexually transmitted diseases for pregnant women in Rwanda. He is also exploring the use of this technology for improving personal health for consumers in the United States.

"The ability to perform state-of-the-art diagnostics on mobile devices has the potential to revolutionize how patients manage their health," Sia says. "I'm pleased with the progress we have made so far, and we are working hard with our collaborators to bring this technology to clinicians, patients, and consumers."

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu/

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>