Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast, low-cost device uses the cloud to speed up diagnostic testing for HIV and more

25.01.2013
Mobile device can easily be used in remote areas around the world

Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering, has taken his innovative lab-on-a-chip and developed a way to not only check a patient's HIV status anywhere in the world with just a finger prick, but also synchronize the results automatically and instantaneously with central health-care records—10 times faster, the researchers say, than the benchtop ELISA, a broadly used diagnostic technique. The device was field-tested in Rwanda by a collaborative team from the Sia lab and ICAP at Columbia's Mailman School of Public Health.

In the study published online January 18, 2013, in Clinical Chemistry, and in the print April 2013 issue, Sia describes a major advance towards providing people in remote areas of the world with laboratory-quality diagnostic services traditionally available only in centralized health care settings.

"We've built a handheld mobile device that can perform laboratory-quality HIV testing, and do it in just 15 minutes and on finger-pricked whole blood," Sia says. "And, unlike current HIV rapid tests, our device can pick up positive samples normally missed by lateral flow tests, and automatically synchronize the test results with patient health records across the globe using both the cell phone and satellite networks."

Sia collaborated with Claros Diagnostics (a company he co-founded, now called OPKO Diagnostics) to develop a pioneering strategy for an integrated microfluidic-based diagnostic device—the mChip—that can perform complex laboratory assays, and do so with such simplicity that these tests can easily be carried out anywhere, including in resource-limited settings, at a very low cost. This new study builds upon his earlier scientific concepts and incorporates a number of new engineering elements that make the test automated to run with data communication over both cell phone and satellite networks.

"There are a set of core functions that such a mobile device has to deliver," he says. "These include fluid pumping, optical detection, and real-time synchronization of diagnostic results with patient records in the cloud. We've been able to engineer all these functions on a handheld mobile device and all powered by a battery."

This new technology, which combines cell phone and satellite communication technologies with fluid miniaturization techniques for performing all essential ELISA functions, could lead to diagnosis and treatment for HIV-infected people who, because they cannot get to centralized health care centers, do not get tested or treated.

"This is an important step forward for us towards making a real impact on patients," says Jessica Justman, MD, senior technical director at ICAP and associate clinical professor of medicine in epidemiology at the Mailman School of Public Health. "And with the real-time data upload, policymakers and epidemiologists can also monitor disease prevalence across geographical regions more quickly and effectively."

Working with ICAP, OPKO, the Rwandan Ministry of Health, and Rwandan collaborators at Muhima Hospital and two health clinics—Projet San Francisco and Projet Ubuzima, Sia and his team assessed the device's ability to perform HIV testing and then synchronized results in real time with the patients' electronic health records. They successfully tested over 200 serum, plasma, and whole blood samples, all collected in Rwanda.

The mobile device also successfully transmitted all whole-blood test results from a Rwandan clinic to a medical records database stored on the cloud. The device produced results in agreement with a leading ELISA test, including detection of weakly positive samples that were missed by existing rapid tests. The device operated autonomously with minimal user input, produced each result in 15 minutes (compared to 3 hours with the benchtop ELISA), and consumed as little power as a mobile phone.

This latest study builds on previous work from the Sia Lab on building a lab-on-a-chip for personal health diagnosis. For this earlier device, Columbia University was named a Medical Devices runner-up in The Wall Street Journal's prestigious Technology Innovation Awards in 2011.

This research has been funded by a $2-million Saving Lives at Birth transition grant (United States Agency for International Development, the Bill & Melinda Gates Foundation, Government of Norway, Grand Challenges Canada, and the World Bank).

Sia's next step will be to implement an antenatal care panel for diagnosing HIV and sexually transmitted diseases for pregnant women in Rwanda. He is also exploring the use of this technology for improving personal health for consumers in the United States.

"The ability to perform state-of-the-art diagnostics on mobile devices has the potential to revolutionize how patients manage their health," Sia says. "I'm pleased with the progress we have made so far, and we are working hard with our collaborators to bring this technology to clinicians, patients, and consumers."

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>