Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast, low-cost device uses the cloud to speed up diagnostic testing for HIV and more

25.01.2013
Mobile device can easily be used in remote areas around the world

Samuel K. Sia, associate professor of biomedical engineering at Columbia Engineering, has taken his innovative lab-on-a-chip and developed a way to not only check a patient's HIV status anywhere in the world with just a finger prick, but also synchronize the results automatically and instantaneously with central health-care records—10 times faster, the researchers say, than the benchtop ELISA, a broadly used diagnostic technique. The device was field-tested in Rwanda by a collaborative team from the Sia lab and ICAP at Columbia's Mailman School of Public Health.

In the study published online January 18, 2013, in Clinical Chemistry, and in the print April 2013 issue, Sia describes a major advance towards providing people in remote areas of the world with laboratory-quality diagnostic services traditionally available only in centralized health care settings.

"We've built a handheld mobile device that can perform laboratory-quality HIV testing, and do it in just 15 minutes and on finger-pricked whole blood," Sia says. "And, unlike current HIV rapid tests, our device can pick up positive samples normally missed by lateral flow tests, and automatically synchronize the test results with patient health records across the globe using both the cell phone and satellite networks."

Sia collaborated with Claros Diagnostics (a company he co-founded, now called OPKO Diagnostics) to develop a pioneering strategy for an integrated microfluidic-based diagnostic device—the mChip—that can perform complex laboratory assays, and do so with such simplicity that these tests can easily be carried out anywhere, including in resource-limited settings, at a very low cost. This new study builds upon his earlier scientific concepts and incorporates a number of new engineering elements that make the test automated to run with data communication over both cell phone and satellite networks.

"There are a set of core functions that such a mobile device has to deliver," he says. "These include fluid pumping, optical detection, and real-time synchronization of diagnostic results with patient records in the cloud. We've been able to engineer all these functions on a handheld mobile device and all powered by a battery."

This new technology, which combines cell phone and satellite communication technologies with fluid miniaturization techniques for performing all essential ELISA functions, could lead to diagnosis and treatment for HIV-infected people who, because they cannot get to centralized health care centers, do not get tested or treated.

"This is an important step forward for us towards making a real impact on patients," says Jessica Justman, MD, senior technical director at ICAP and associate clinical professor of medicine in epidemiology at the Mailman School of Public Health. "And with the real-time data upload, policymakers and epidemiologists can also monitor disease prevalence across geographical regions more quickly and effectively."

Working with ICAP, OPKO, the Rwandan Ministry of Health, and Rwandan collaborators at Muhima Hospital and two health clinics—Projet San Francisco and Projet Ubuzima, Sia and his team assessed the device's ability to perform HIV testing and then synchronized results in real time with the patients' electronic health records. They successfully tested over 200 serum, plasma, and whole blood samples, all collected in Rwanda.

The mobile device also successfully transmitted all whole-blood test results from a Rwandan clinic to a medical records database stored on the cloud. The device produced results in agreement with a leading ELISA test, including detection of weakly positive samples that were missed by existing rapid tests. The device operated autonomously with minimal user input, produced each result in 15 minutes (compared to 3 hours with the benchtop ELISA), and consumed as little power as a mobile phone.

This latest study builds on previous work from the Sia Lab on building a lab-on-a-chip for personal health diagnosis. For this earlier device, Columbia University was named a Medical Devices runner-up in The Wall Street Journal's prestigious Technology Innovation Awards in 2011.

This research has been funded by a $2-million Saving Lives at Birth transition grant (United States Agency for International Development, the Bill & Melinda Gates Foundation, Government of Norway, Grand Challenges Canada, and the World Bank).

Sia's next step will be to implement an antenatal care panel for diagnosing HIV and sexually transmitted diseases for pregnant women in Rwanda. He is also exploring the use of this technology for improving personal health for consumers in the United States.

"The ability to perform state-of-the-art diagnostics on mobile devices has the potential to revolutionize how patients manage their health," Sia says. "I'm pleased with the progress we have made so far, and we are working hard with our collaborators to bring this technology to clinicians, patients, and consumers."

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>