Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast growth, low defense – plants facing a dilemma

28.01.2011
Ecologists and plant biologists of the University of Zürich demonstrate together with American researchers that fast plant growth is achieved at the expense of natural defense mechanisms.

The new findings are important for agricultural crops, as such crops usually have been bred for high yield which at the same time reduced their natural resistance to herbivores.

Plants are attacked by a multitude of insects and mammals. As defense against these herbivores they developed complex defense mechanisms over the course of evolution: spines, thorns, leaf hairs and a number of toxic chemical substances. For decades it has been controversially discussed whether the production of defense traits incurs costs to the plants. Now, using a new method the ecologists and plant biologists of the University of Zürich together with their American colleagues demonstrate these costs accurately in a Proceedings of the Royal Society article.

For their study, the researchers planted different «knockout»-mutants of the same genotype of the model plant Arabidopsis thaliana. They then harvested a subset of these plants in evenly distributed intervals to measure the biomass growth over the whole plant life. «Mutants with suppressed defense mechanisms showed an increased growth rate» Tobias Züst explains the result of his study. But the faster growth comes at an added cost: aphids reproduce faster on these plants than on slow growing plants with intact defense mechanisms. This is a result of the fact that fast growing plants provide more resources to the herbivore than slow growing plants in the same amount of time.

The study shows that natural resistance is often not compatible with fast growth. This finding is of great importance for agricultural crops: These crops have been selected for high yield and as a consequence have very low natural resistance to herbivores, consequentially requiring high input of insecticides.

Reference:
Tobias Züst, Bindu Joseph, Kentaro K. Shimizu, Daniel J. Kliebenstein and Lindsay A. Turnbull, Using knockout mutants to reveal the growth costs of defensive traits, in: Proceedings of the Royal Society B, 2011, Jan. 26, doi:10.1098/rspb.2010.2475
Contact:
Tobias Züst, Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Phone: +41 44 635 61 05, E-Mail: tobias.zuest@ieu.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh.ch/articles/2011/pflanzen-wachstum-verteidigung_en.html
http://www.mediadesk.uzh.ch/articles/2011/pflanzen-wachstum-verteidigung.html

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>