Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast-Evolving Genes Control Developmental Differences in Social Insects

21.09.2011
Genes essential to producing the developmental differences displayed by social insects evolve more rapidly than genes governing other aspects of organismal function, a new study has found.

All species of life are able to develop in different ways by varying the genes they express, ultimately becoming different shapes, sizes, colors and sexes. This plasticity permits organisms to operate successfully in their environments. A new study of the genomes of social insects provides insight into the evolution of the genes involved in this developmental plasticity.

The study, which was conducted by researchers at the Georgia Institute of Technology and the University of Lausanne in Switzerland, showed that genes involved in creating different sexes, life stages and castes of fire ants and honeybees evolved more rapidly than genes not involved in these developmental processes. The researchers also found that these fast-evolving genes exhibited elevated rates of evolution even before they were recruited to produce diverse forms of an organism.

“This was a totally unexpected finding because most theory suggested that genes involved in producing diverse forms of an organism would evolve rapidly specifically because they generated developmental differences,” said Michael Goodisman, an associate professor in the School of Biology at Georgia Tech. “Instead, this study suggests that fast-evolving genes are actually predisposed to generating new developmental forms.”

The results of the study will be published in the Sept. 20, 2011 issue of the journal Proceedings of the National Academy of Sciences. This research was supported by the National Science Foundation.

The project was an international collaboration between Goodisman, associate professor Soojin Yi and postdoctoral fellow Brendan Hunt from the Georgia Tech School of Biology, and professor Laurent Keller, research scientist DeWayne Shoemaker, and postdoctoral fellows Lino Ometto and Yannick Wurm from the Department of Ecology and Evolution at the University of Lausanne.

Social insects exhibit a sophisticated social structure in which queens reproduce and workers engage in tasks related to brood-rearing and colony defense. By investigating the evolution of genes associated with castes, sexes and developmental stages of the invasive fire ant Solenopsis invicta, the researchers explored how social insects produce such a diversity of form and function from genetically similar individuals.

“Social insects provided the perfect test subjects because they can develop into such dramatically different forms,” said Goodisman.

Microarray analyses revealed that many fire ant genes were regulated differently depending on whether the fire ant was male or female, queen or worker, and pupal or adult. These differentially expressed genes exhibited elevated rates of evolution, as predicted. In addition, genes that were differentially expressed in multiple contexts -- castes, sexes or developmental stages -- tended to evolve more rapidly than genes that were differentially expressed in only a single context.

To examine when the genes with elevated rates of evolution began to evolve rapidly, the researchers compared the rate of evolution of genes associated with the production of castes in the fire ant with the same genes in a wasp that does not have a caste system. They found that the genes were rapidly evolving in the genomes of both species, even though only one produced a caste system. These results were also replicated for the honeybee Apis mellifera.

“This is one the most comprehensive studies of the evolution of genes involved in producing developmental differences,” Goodisman noted.

This study helps explain the fundamental evolutionary processes that allow organisms to develop different adaptive forms. Future research will include determining what these fast-evolving genes do and how they’re involved in the production of different sexes, life stages and castes, said Goodisman.

This project is supported by the National Science Foundation (NSF) (Award No. DEB-0640690). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

Abby Robinson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>