Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast Aging and Time Machine: Genome of the Turquoise killifish sequenced

04.12.2015

The Turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate that can be kept under laboratory conditions. It exemplifies a rapid growth and aging in fast motion. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, have obtained the fish’s genome sequence – a significant milestone for the establishment of N. furzeri as a new model system for aging research. The results are published in the journal Cell.

When observing the colorful Turquoise killifish swimming in its aquarium, it is difficult to believe that it can serve as a model system for human aging; but it does. An ever-growing number of researchers interested in aging are working with this fish due to its extremely short lifespan that – even under optimal housing conditions – does not extend beyond four to twelve months, hallmarked by fast growth and rapid aging.


New model system for aging research: Turquoise killifish (Nothobranchius furzeri)

(Photo: FLI / Nadine Grimm)

Indeed, the aging process of N. furzeri and humans share many common features, both being vertebrates. An international team of scientists from the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) – especially Kathrin Reichwald, Alessandro Cellerino, Christoph Englert and Matthias Platzer – alongside cooperating institutes, have now succeeded in deciphering and analyzing N. furzeri's genome. This milestone toward understanding the genetic control of human aging, and the results – together with a parallel study from colleagues at Stanford University – have now been published in the renowned Cell journal.

Nothobranchius genome publicly available

Crucially, for those researchers who use N. furzeri as a model system, the sequencing of its genome and a large number of transcriptome data (i.e. which genes are switched on or off during the process of aging) are now publicly available to the research community.

"The quality of this sequence is comparable to the first sequencing of the human genome as published 15 years ago, which revolutionized biomedical research at that time", enthuses Matthias Platzer – research group leader at the FLI and involved in both the human and fish genome sequencing progressions. "Certainly, a lot of details are still unclear especially with regard to the function of genes. But the most important cornerstone for further genetic analyses has been laid".

"Hot Spots of Aging" on genome

By comparing the aging process of fish brain, liver and skin, the FLI researchers found that the genes which are responsible for aging in N. furzeri are not spread randomly, but rather, are concentrated into specific small regions of the genome. "The discovery of these aging hot spots in the genome lets us assume that the genes within these regions are somehow coordinated in their activation or de-activation ", comments Alessandro Cellerino.

The Neurobiologist at the Scuola Normale Superiore in Pisa, Italy, is an associated Fellow at the FLI and, twelve years ago, was one of the first to propose N. furzeri as an aging model system. "Knowing how aging-relevant genes are organized and how they can be (in)activated may help to identify key mechanisms regulating human aging as well", Cellerino continues.

Aging as Déjà-vu

Another analysis focused on the patterns of gene activation during diapause, which the embryos of N. furzeri may undergo during the dry seasons. Astonishingly, the activation patterns share similarities with those observed during aging: protein production is increased, while cell division is hindered. In aging, this gene expression presumably occurs to compensate for the accumulation of protein damages; during diapause, the same genes may be activated to prepare the whole embryo to catch up with the interrupted development and be ready to hatch as the rainy season starts.

Christoph Englert, a Professor for Molecular Genetics at Jena University and research group leader at the FLI has been working with N. furzeri for years. He explains that "we are the first to show these similarities between gene activation in diapause and aging in vertebrates. This could be a new starting point to discover even more aging-relevant genes".

N. furzeri as Time Machine

Peering deep into the genome of N. furzeri is akin to traveling in a time machine. In this little fish, researchers can observe the development of sex chromosomes which occurred in mammals 300 million years ago. A new gene for sex determination has also been discovered. Gene gdf6, which in humans is relevant for bone growth, serves as genetic switch in N. furzeri, turning the fish embryos into males.

"We already assumed the sex determination to be an evolutionary young mechanism, because X and Y chromosome of N. furzeri still look very similar", Kathrin Reichwald – Postdoc at the FLI and first author of the study – describes. "But finding this genetic switch is a real surprise". For the analyses of sex determination in N. furzeri, the FLI collaborated greatly with Manfred Schartl from the BioCenter of Würzburg University, an expert in this field.

Deciphering the Genome of N. furzeri – A Milestone for Understanding the Genetics of Aging

The sequencing of the N. furzeri genome represents a milestone for human aging research– since almost all genes of the little fish are also present in humans. With the data provided by the FLI researchers, scientists around the world may now set targeted mutations to investigate the relevance of single genes for aging, in order to better understand regulating mechanisms and, eventually, develop new approaches for therapy or prevention of aging-related diseases.

Dataset
http://www.nothobranchius.info/NFINgb

Further Information (pictures, videos, interview-videos with the authors)
http://www.leibniz-fli.de/institute/public-relations/press-releases/nfurzeri-genome/

Publication

Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, Schmid F, Priebe S, Liehr T, Görlach M, Than ME, Hiller M, Kestler HA, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 2015 (in press). DOI: 10.1016/j.cell.2015.10.071

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
Beutenbergstr. 11, D-07745 Jena
Tel.: 03641-656373, Fax: 03641-656351, E-Mail: presse@leibniz-fli.de

Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-gemeinschaft.de/en/home/ for more information.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Further reports about: Aging FLI Genome Leibniz-Institut aging process diapause genetic switch killifish

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>