Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farm salmon pose clear reproductive threat to wild gene pools

10.03.2014

Farmed salmon show full reproductive potential to invade wild gene pools and should be sterilised - according to new research from the University of East Anglia (UEA).

Findings published today reveal that, while farmed salmon are genetically different to their wild counterparts, they are just as fertile. This is important information because millions of farmed salmon escape into the wild – posing threats to wild gene pools.

Lead Researcher Prof Matt Gage from UEA’s school of Biological Sciences said: “Around 95 per cent of all salmon in existence are farmed, and domestication has made them very different to wild populations, each of which is locally adapted to its own river system.

“Farmed salmon grow very fast, are aggressive, and not as clever as wild salmon when it comes to dealing with predators. These domestic traits are good for producing fish for the table, but not for the stability of wild populations.

“The problem is that farmed salmon can escape each year in their millions, getting into wild spawning populations, where they can then reproduce and erode wild gene pools, introducing these negative traits.

“We know that recently-escaped farmed salmon are inferior to wild fish in reproduction, but we do not have detailed information on sperm and egg performance, which could have been affected by domestication. Our work shows that farm fish are as potent at the gamete level as wild fish, and if farm escapes can revive their spawning behaviour by a period in the wild, clearly pose a significant threat of hybridisation with wild populations.”

Researchers used a range of in vitro fertilization tests in conditions that mimicked spawning in the natural environment, including tests of sperm competitiveness and egg compatibility. All tests on sperm and egg form and function showed that farmed salmon are as fertile as wild salmon – identifying a clear threat of farmed salmon reproducing with wild fish.

“Some Norwegian rivers have recorded big numbers of farmed fish present – as much as 50 per cent. Both anglers and conservationists are worried by farmed fish escapees which could disrupt locally adapted traits like timing of return, adult body size, and disease resistance.

“Salmon farming is a huge business in the UK, Norway and beyond, and while it does reduce the pressure on wild fish stocks, it can also create its own environmental pressures through genetic disruption.

“A viable solution is to induce ‘triploidy’ by pressure-treating salmon eggs just after fertilisation - where the fish grows as normal, but with both sex chromosomes; this is normal for farming rainbow trout. The resulting adult develops testes and ovaries but both are much reduced and most triploids are sterile. These triploid fish can’t reproduce if they escape, but the aquaculture industry has not embraced this technology yet because of fears that triploids don’t perform as well in farms as normal diploid fish, eroding profits.”

This research was funded by the Natural Environment Research Council (NERC) and the Royal Society.

‘Assessing risks of invasion through gamete performance: farm Atlantic salmon sperm and eggs show equivalence in function, fertility, compatibility and competitiveness to wild Atlantic salmon’ is published by Evolutionary Applications on March 10, 2014.

Lisa Horton | EurekAlert!
Further information:
http://www.uea.ac.uk/mac/comm/media/press/2014/March/salmon-gene-pool

Further reports about: Atlantic domestication eggs escape function populations reproductive sperm sterile

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>